{"title":"Convergence and performance analysis of leaderless synchronization in Wi-Fi networks","authors":"Andrea Vesco, F. Abrate, R. Scopigno","doi":"10.1145/2069087.2069095","DOIUrl":null,"url":null,"abstract":"This work addresses synchronization in multi-hop wireless access networks, with the main but not exclusive purpose of providing end-to-end Quality of Service by time-based scheduling. In these networks all nodes require a common notion of time in order to deploy a common time reference structure and to locate themselves therein. Although nodes can be synchronized with an external and absolute time reference, as provided by a global navigation satellite system, this work focuses on a distributed synchronization solution exploiting local time information at each node. The convergence and performance analysis of a consensus-based solution called Leaderless Time Synchronization Protocol (LTSP) is presented considering different sources of synchronization errors.","PeriodicalId":311005,"journal":{"name":"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2069087.2069095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This work addresses synchronization in multi-hop wireless access networks, with the main but not exclusive purpose of providing end-to-end Quality of Service by time-based scheduling. In these networks all nodes require a common notion of time in order to deploy a common time reference structure and to locate themselves therein. Although nodes can be synchronized with an external and absolute time reference, as provided by a global navigation satellite system, this work focuses on a distributed synchronization solution exploiting local time information at each node. The convergence and performance analysis of a consensus-based solution called Leaderless Time Synchronization Protocol (LTSP) is presented considering different sources of synchronization errors.