Classification of bidimensional images using artificial intelligence techniques

G. Perelmuter, Paula Pereira, M. Vellasco, M. Pacheco, E. Carrera
{"title":"Classification of bidimensional images using artificial intelligence techniques","authors":"G. Perelmuter, Paula Pereira, M. Vellasco, M. Pacheco, E. Carrera","doi":"10.1109/CYBVIS.1996.629437","DOIUrl":null,"url":null,"abstract":"This article presents the structure of an \"intelligent classifier\" composed of three modules: 1) the preprocessor, responsible for the transformation of the raw image; 2) the characteristics extractor, implemented by a genetic algorithm, which is responsible for the selection of the most relevant coefficients; and 3) the classifier, implemented by a neural network. Generic algorithms have been used as a search technique for large sets of data and neural networks, due to their ability to extract information from complex sets of data, have been largely applied in computer vision for pattern classification. The complete image classification system is invariant to translation rotation and sizing of the analysed object.","PeriodicalId":103287,"journal":{"name":"Proceedings II Workshop on Cybernetic Vision","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings II Workshop on Cybernetic Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBVIS.1996.629437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article presents the structure of an "intelligent classifier" composed of three modules: 1) the preprocessor, responsible for the transformation of the raw image; 2) the characteristics extractor, implemented by a genetic algorithm, which is responsible for the selection of the most relevant coefficients; and 3) the classifier, implemented by a neural network. Generic algorithms have been used as a search technique for large sets of data and neural networks, due to their ability to extract information from complex sets of data, have been largely applied in computer vision for pattern classification. The complete image classification system is invariant to translation rotation and sizing of the analysed object.
利用人工智能技术对二维图像进行分类
本文提出了一个由三个模块组成的“智能分类器”的结构:1)预处理模块,负责对原始图像进行变换;2)特征提取器,由遗传算法实现,负责选择最相关的系数;3)分类器,由神经网络实现。通用算法已被用作大型数据集和神经网络的搜索技术,由于它们能够从复杂的数据集中提取信息,已被广泛应用于计算机视觉的模式分类。完整的图像分类系统不受被分析对象的平移、旋转和大小的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信