Detection of Space-Time Cluster

I. Sikder, Joseph M. Woodside
{"title":"Detection of Space-Time Cluster","authors":"I. Sikder, Joseph M. Woodside","doi":"10.1109/ICICT.2007.375360","DOIUrl":null,"url":null,"abstract":"Detection of space-time cluster is an important aspect of spatial epidemiology and GIS-based data mining. This paper compares three clustering algorithm namely, scan statistic [1], local indicators of spatial autocorrelation (LISA) [2] and local G-statistic [3]. This study involves application of routine clinical service data collected by a Northeast Ohio healthcare organization in USA over a period 1994 -2006 to find excess space-time variations of lung cancer. Using empirical Byes adjustment of incidence rate, almost identical spatial pattern of clusters were detected by the three algorithms. However, the space-time scan statistics involving cylindrical search window shows somewhat different spatial localization. Finally, the study compares the effectiveness the different methods.","PeriodicalId":206443,"journal":{"name":"2007 International Conference on Information and Communication Technology","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2007.375360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of space-time cluster is an important aspect of spatial epidemiology and GIS-based data mining. This paper compares three clustering algorithm namely, scan statistic [1], local indicators of spatial autocorrelation (LISA) [2] and local G-statistic [3]. This study involves application of routine clinical service data collected by a Northeast Ohio healthcare organization in USA over a period 1994 -2006 to find excess space-time variations of lung cancer. Using empirical Byes adjustment of incidence rate, almost identical spatial pattern of clusters were detected by the three algorithms. However, the space-time scan statistics involving cylindrical search window shows somewhat different spatial localization. Finally, the study compares the effectiveness the different methods.
时空簇的探测
时空聚类检测是空间流行病学和基于gis的数据挖掘的一个重要方面。本文比较了扫描统计[1]、局部空间自相关指标(LISA)[2]和局部g统计[3]三种聚类算法。本研究利用美国俄亥俄州东北部某医疗机构1994 -2006年的常规临床服务数据,寻找肺癌的时空变异。采用经验Byes调整发生率,三种算法检测到的聚类空间格局基本一致。然而,涉及圆柱搜索窗口的时空扫描统计量显示出不同的空间定位。最后,比较了不同方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信