SST-GCN: Structure aware Spatial-Temporal GCN for 3D Hand Pose Estimation

Viet-Thanh Le, Thanh-Hai Tran, Van-Nam Hoang, Van-Hung Le, Thi-Lan Le, Hai Vu
{"title":"SST-GCN: Structure aware Spatial-Temporal GCN for 3D Hand Pose Estimation","authors":"Viet-Thanh Le, Thanh-Hai Tran, Van-Nam Hoang, Van-Hung Le, Thi-Lan Le, Hai Vu","doi":"10.1109/KSE53942.2021.9648765","DOIUrl":null,"url":null,"abstract":"Human hand gesture is an efficient way of communication for Human-computer interaction (HCI) applications. To this end, one of the main requirements is an automatic hand pose estimation. Existing methods usually explore spatial relationships among hand joints in a single image to estimate the 3D hand pose. By doing so, the temporal constraints among hand poses are under-investigated. In this paper, we propose SST-GCN (Structure aware Spatial-Temporal Graphic Convolutional Network) that incorporates both spatial dependencies and temporal consistencies to improve 3D hand pose estimation results. Our method bases on an existing spatial-temporal GCN for 3D pose estimation. In addition, we introduce a new loss function that takes geometric constraints of hand structure into account. Our proposed method takes a 2D hand pose as an input to estimates the 3D hand pose. Finally, we evaluate our method on the First-Person Hand Action Benchmark (FPHAB) dataset. The experimental results show that the proposed method gives promising results in comparison with the original ST-GCN network.","PeriodicalId":130986,"journal":{"name":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE53942.2021.9648765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Human hand gesture is an efficient way of communication for Human-computer interaction (HCI) applications. To this end, one of the main requirements is an automatic hand pose estimation. Existing methods usually explore spatial relationships among hand joints in a single image to estimate the 3D hand pose. By doing so, the temporal constraints among hand poses are under-investigated. In this paper, we propose SST-GCN (Structure aware Spatial-Temporal Graphic Convolutional Network) that incorporates both spatial dependencies and temporal consistencies to improve 3D hand pose estimation results. Our method bases on an existing spatial-temporal GCN for 3D pose estimation. In addition, we introduce a new loss function that takes geometric constraints of hand structure into account. Our proposed method takes a 2D hand pose as an input to estimates the 3D hand pose. Finally, we evaluate our method on the First-Person Hand Action Benchmark (FPHAB) dataset. The experimental results show that the proposed method gives promising results in comparison with the original ST-GCN network.
SST-GCN:三维手部姿态估计的结构感知时空GCN
在人机交互(HCI)应用中,手势是一种有效的通信方式。为此,其中一个主要要求是自动手部姿态估计。现有的方法通常是在单个图像中探索手关节之间的空间关系来估计三维手姿。通过这样做,对手部姿势的时间约束进行了充分的研究。在本文中,我们提出了结合空间依赖性和时间一致性的SST-GCN(结构感知时空图形卷积网络)来改善三维手部姿态估计结果。我们的方法基于现有的用于三维姿态估计的时空GCN。此外,我们还引入了一个考虑手结构几何约束的新的损失函数。我们提出的方法以二维手部姿态作为输入来估计三维手部姿态。最后,我们在第一人称手部动作基准(FPHAB)数据集上评估了我们的方法。实验结果表明,与原有的ST-GCN网络相比,该方法取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信