Parallel unsteady flow line integral convolution for high-performance dense visualization

Zi'ang Ding, Zhanping Liu, Yang Yu, Wei Chen
{"title":"Parallel unsteady flow line integral convolution for high-performance dense visualization","authors":"Zi'ang Ding, Zhanping Liu, Yang Yu, Wei Chen","doi":"10.1109/PACIFICVIS.2015.7156352","DOIUrl":null,"url":null,"abstract":"This paper presents an accurate parallel implementation of unsteady flow line integral convolution (UFLIC) for high-performance visualization of large time-varying flows. Our approach differs from previous implementations by using a novel value scattering+gathering mechanism to parallelize UFLIC and designing a pathline reuse strategy to reduce the computational cost of pathline integration. By exploiting the massive parallelism of modern graphical processing units (GPU), the proposed method allows for real-time dense visualization of unsteady flows with high spatial-temporal coherence.","PeriodicalId":177381,"journal":{"name":"2015 IEEE Pacific Visualization Symposium (PacificVis)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2015.7156352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents an accurate parallel implementation of unsteady flow line integral convolution (UFLIC) for high-performance visualization of large time-varying flows. Our approach differs from previous implementations by using a novel value scattering+gathering mechanism to parallelize UFLIC and designing a pathline reuse strategy to reduce the computational cost of pathline integration. By exploiting the massive parallelism of modern graphical processing units (GPU), the proposed method allows for real-time dense visualization of unsteady flows with high spatial-temporal coherence.
并行非定常流线积分卷积的高性能密集可视化
为实现大时变流动的高性能可视化,提出了一种非定常流线积分卷积(ulic)的精确并行实现方法。我们的方法不同于以往的实现,使用了一种新的值散射+收集机制来并行化ulic,并设计了一条路径重用策略来降低路径集成的计算成本。该方法利用现代图形处理单元(GPU)的大规模并行性,实现了具有高时空相干性的非定常流场的实时密集可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信