{"title":"Cascade Evidential Learning for Open-world Weakly-supervised Temporal Action Localization","authors":"Mengyuan Chen, Junyu Gao, Changsheng Xu","doi":"10.1109/CVPR52729.2023.01416","DOIUrl":null,"url":null,"abstract":"Targeting at recognizing and localizing action instances with only video-level labels during training, Weakly-supervised Temporal Action Localization (WTAL) has achieved significant progress in recent years. However, living in the dynamically changing open world where unknown actions constantly spring up, the closed-set assumption of existing WTAL methods is invalid. Compared with traditional open-set recognition tasks, Open-world WTAL (OW-TAL) is challenging since not only are the annotations of unknown samples unavailable, but also the fine-grained annotations of known action instances can only be inferred ambiguously from the video category labels. To address this problem, we propose a Cascade Evidential Learning framework at an evidence level, which targets at OWTAL for the first time. Our method jointly leverages multi-scale temporal contexts and knowledge-guided prototype information to progressively collect cascade and enhanced evidence for known action, unknown action, and background separation. Extensive experiments conducted on THUMOS-14 and ActivityNet-v1.3 verify the effectiveness of our method. Besides the classification metrics adopted by previous open-set recognition methods, we also evaluate our method on localization metrics which are more reasonable for OWTAL.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting at recognizing and localizing action instances with only video-level labels during training, Weakly-supervised Temporal Action Localization (WTAL) has achieved significant progress in recent years. However, living in the dynamically changing open world where unknown actions constantly spring up, the closed-set assumption of existing WTAL methods is invalid. Compared with traditional open-set recognition tasks, Open-world WTAL (OW-TAL) is challenging since not only are the annotations of unknown samples unavailable, but also the fine-grained annotations of known action instances can only be inferred ambiguously from the video category labels. To address this problem, we propose a Cascade Evidential Learning framework at an evidence level, which targets at OWTAL for the first time. Our method jointly leverages multi-scale temporal contexts and knowledge-guided prototype information to progressively collect cascade and enhanced evidence for known action, unknown action, and background separation. Extensive experiments conducted on THUMOS-14 and ActivityNet-v1.3 verify the effectiveness of our method. Besides the classification metrics adopted by previous open-set recognition methods, we also evaluate our method on localization metrics which are more reasonable for OWTAL.