Graphical Object Detection in Document Images

Ranajit Saha, Ajoy Mondal, C. V. Jawahar
{"title":"Graphical Object Detection in Document Images","authors":"Ranajit Saha, Ajoy Mondal, C. V. Jawahar","doi":"10.1109/ICDAR.2019.00018","DOIUrl":null,"url":null,"abstract":"Graphical elements: particularly tables and figures contain a visual summary of the most valuable information contained in a document. Therefore, localization of such graphical objects in the document images is the initial step to understand the content of such graphical objects or document images. In this paper, we present a novel end-to-end trainable deep learning based framework to localize graphical objects in the document images called as Graphical Object Detection ( GOD ). Our framework is data-driven and does not require any heuristics or meta-data to locate graphical objects in the document images. The GOD explores the concept of transfer learning and domain adaptation to handle scarcity of labeled training images for graphical object detection task in the document images. Performance analysis carried out on the various public benchmark data sets: ICDAR -2013, ICDAR - POD2017 and UNLV shows that our model yields promising results as compared to state-of-the-art techniques.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Graphical elements: particularly tables and figures contain a visual summary of the most valuable information contained in a document. Therefore, localization of such graphical objects in the document images is the initial step to understand the content of such graphical objects or document images. In this paper, we present a novel end-to-end trainable deep learning based framework to localize graphical objects in the document images called as Graphical Object Detection ( GOD ). Our framework is data-driven and does not require any heuristics or meta-data to locate graphical objects in the document images. The GOD explores the concept of transfer learning and domain adaptation to handle scarcity of labeled training images for graphical object detection task in the document images. Performance analysis carried out on the various public benchmark data sets: ICDAR -2013, ICDAR - POD2017 and UNLV shows that our model yields promising results as compared to state-of-the-art techniques.
文档图像中的图形对象检测
图形元素:特别是表格和图形,包含文件中最有价值信息的视觉摘要。因此,对这些图形对象在文档图像中的定位是理解这些图形对象或文档图像内容的第一步。在本文中,我们提出了一种新颖的端到端可训练的基于深度学习的框架来定位文档图像中的图形对象,称为图形对象检测(GOD)。我们的框架是数据驱动的,不需要任何启发式方法或元数据来定位文档图像中的图形对象。探讨了迁移学习和领域自适应的概念,以处理文档图像中图形目标检测任务中标记训练图像的稀缺性。对各种公共基准数据集(ICDAR -2013、ICDAR - POD2017和UNLV)进行的性能分析表明,与最先进的技术相比,我们的模型产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信