The steady-state of the (Normalized) LMS is schur convex

Khaled A. Al-Hujaili, T. Al-Naffouri, M. Moinuddin
{"title":"The steady-state of the (Normalized) LMS is schur convex","authors":"Khaled A. Al-Hujaili, T. Al-Naffouri, M. Moinuddin","doi":"10.1109/ICASSP.2016.7472609","DOIUrl":null,"url":null,"abstract":"In this work, we demonstrate how the theory of majorization and schur-convexity can be used to assess the impact of input-spread on the Mean Squares Error (MSE) performance of adaptive filters. First, we show that the concept of majorization can be utilized to measure the spread in input-regressors and subsequently order the input-regressors according to their spread. Second, we prove that the MSE of the Least Mean Squares Error (LMS) and Normalized LMS (NLMS) algorithms are schur-convex, that is, the MSE of the LMS and the NLMS algorithms preserve the majorization order of the inputs which provide an analytical justification to why and how much the MSE performance of the LMS and the NLMS algorithms deteriorate as the spread in input increases.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we demonstrate how the theory of majorization and schur-convexity can be used to assess the impact of input-spread on the Mean Squares Error (MSE) performance of adaptive filters. First, we show that the concept of majorization can be utilized to measure the spread in input-regressors and subsequently order the input-regressors according to their spread. Second, we prove that the MSE of the Least Mean Squares Error (LMS) and Normalized LMS (NLMS) algorithms are schur-convex, that is, the MSE of the LMS and the NLMS algorithms preserve the majorization order of the inputs which provide an analytical justification to why and how much the MSE performance of the LMS and the NLMS algorithms deteriorate as the spread in input increases.
(归一化)LMS的稳态是schur凸
在这项工作中,我们展示了如何使用多数化理论和schur凹凸性来评估输入扩散对自适应滤波器均方误差(MSE)性能的影响。首先,我们证明了多数化的概念可以用来测量输入回归量的扩散,然后根据它们的扩散对输入回归量进行排序。其次,我们证明了最小均方误差(LMS)和归一化LMS (NLMS)算法的MSE是斜凸的,也就是说,LMS和NLMS算法的MSE保持了输入的多数化顺序,这为LMS和NLMS算法的MSE性能随着输入扩散的增加而恶化的原因和程度提供了分析理由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信