Cultured Artificial Fish Swarm Algorithm: An Experimental Evaluation

M. L. Imam, B. H. Adebiyi, H. Bello-Salau, G. Olarinoye, M. O. Momoh
{"title":"Cultured Artificial Fish Swarm Algorithm: An Experimental Evaluation","authors":"M. L. Imam, B. H. Adebiyi, H. Bello-Salau, G. Olarinoye, M. O. Momoh","doi":"10.1109/NigeriaComputConf45974.2019.8949657","DOIUrl":null,"url":null,"abstract":"In this work, a Weighted Cultural Artificial Fish Swarm Algorithm (wCAFSA) which is an amendment of standard artificial fish swarm algorithm (AFSA) is proposed. This algorithm can adaptively select its parameters at every generation in order to reduce the ease at which standard AFSA falls into local optimal. We first introduce inertial weight to adaptively determine visual distance and step size of AFSA thereafter, the Situational and Normative knowledge inherent in cultural algorithm are used to develop new variants of weighted cultural AFSA (wCAFSA Ns, wCAFSA sd, wCAFSA Ns+Sd and wCAFSA Ns+Nd). A collection of sixteen (16) optimization benchmark functions are used to test the performance of the algorithms. The simulation results disclosed that all the new variants of the wCAFSA outclassed the AFSA.","PeriodicalId":228657,"journal":{"name":"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NigeriaComputConf45974.2019.8949657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, a Weighted Cultural Artificial Fish Swarm Algorithm (wCAFSA) which is an amendment of standard artificial fish swarm algorithm (AFSA) is proposed. This algorithm can adaptively select its parameters at every generation in order to reduce the ease at which standard AFSA falls into local optimal. We first introduce inertial weight to adaptively determine visual distance and step size of AFSA thereafter, the Situational and Normative knowledge inherent in cultural algorithm are used to develop new variants of weighted cultural AFSA (wCAFSA Ns, wCAFSA sd, wCAFSA Ns+Sd and wCAFSA Ns+Nd). A collection of sixteen (16) optimization benchmark functions are used to test the performance of the algorithms. The simulation results disclosed that all the new variants of the wCAFSA outclassed the AFSA.
人工养殖鱼群算法的实验评价
本文提出了一种加权养殖人工鱼群算法(wCAFSA),它是对标准人工鱼群算法(AFSA)的改进。该算法可以自适应地选择每一代参数,以减少标准AFSA陷入局部最优的容易程度。首先引入惯性权重自适应确定AFSA的视觉距离和步长,然后利用文化算法固有的情境知识和规范知识开发新的加权文化AFSA变体(wCAFSA Ns、wCAFSA sd、wCAFSA Ns+ sd和wCAFSA Ns+Nd)。一组16个优化基准函数被用来测试算法的性能。仿真结果表明,wCAFSA的所有新变体都优于AFSA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信