A Comparative Study on End-to-End Speech to Text Translation

Parnia Bahar, Tobias Bieschke, H. Ney
{"title":"A Comparative Study on End-to-End Speech to Text Translation","authors":"Parnia Bahar, Tobias Bieschke, H. Ney","doi":"10.1109/ASRU46091.2019.9003774","DOIUrl":null,"url":null,"abstract":"Recent advances in deep learning show that end-to-end speech to text translation model is a promising approach to direct the speech translation field. In this work, we provide an overview of different end-to-end architectures, as well as the usage of an auxiliary connectionist temporal classification (CTC) loss for better convergence. We also investigate on pre-training variants such as initializing different components of a model using pretrained models, and their impact on the final performance, which gives boosts up to 4% in Bleu and 5% in Ter. Our experiments are performed on 270h IWSLT TED-talks En→De, and 100h LibriSpeech Audio-books En→Fr. We also show improvements over the current end-to-end state-of-the-art systems on both tasks.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Recent advances in deep learning show that end-to-end speech to text translation model is a promising approach to direct the speech translation field. In this work, we provide an overview of different end-to-end architectures, as well as the usage of an auxiliary connectionist temporal classification (CTC) loss for better convergence. We also investigate on pre-training variants such as initializing different components of a model using pretrained models, and their impact on the final performance, which gives boosts up to 4% in Bleu and 5% in Ter. Our experiments are performed on 270h IWSLT TED-talks En→De, and 100h LibriSpeech Audio-books En→Fr. We also show improvements over the current end-to-end state-of-the-art systems on both tasks.
端到端语音与文本翻译的比较研究
深度学习的最新进展表明,端到端语音到文本的翻译模型是指导语音翻译领域的一种很有前途的方法。在这项工作中,我们概述了不同的端到端架构,以及使用辅助连接时间分类(CTC)损失来更好地收敛。我们还研究了预训练变量,例如使用预训练模型初始化模型的不同组件,以及它们对最终性能的影响,这在Bleu和Ter中分别提高了4%和5%。我们的实验是在270小时IWSLT TED-talks En→De和100小时librisspeech Audio-books En→Fr上进行的。我们还展示了在这两个任务上对当前端到端最先进系统的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信