Nowcasting New Zealand GDP Using Machine Learning Algorithms

Adam Richardson, T. Mulder, Tugru l Vehbi
{"title":"Nowcasting New Zealand GDP Using Machine Learning Algorithms","authors":"Adam Richardson, T. Mulder, Tugru l Vehbi","doi":"10.2139/ssrn.3256578","DOIUrl":null,"url":null,"abstract":"This paper analyses the real-time nowcasting performance of machine learning algorithms estimated on New Zealand data. Using a large set of real-time quarterly macroeconomic indicators, we train a range of popular machine learning algorithms and nowcast real GDP growth for each quarter over the 2009Q1-2018Q1 period. We compare the predictive accuracy of these nowcasts with that of other traditional univariate and multivariate statistical models. We find that the machine learning algorithms outperform the traditional statistical models. Moreover, combining the individual machine learning nowcasts further improves the performance than in the case of the individual nowcasts alone.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3256578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

This paper analyses the real-time nowcasting performance of machine learning algorithms estimated on New Zealand data. Using a large set of real-time quarterly macroeconomic indicators, we train a range of popular machine learning algorithms and nowcast real GDP growth for each quarter over the 2009Q1-2018Q1 period. We compare the predictive accuracy of these nowcasts with that of other traditional univariate and multivariate statistical models. We find that the machine learning algorithms outperform the traditional statistical models. Moreover, combining the individual machine learning nowcasts further improves the performance than in the case of the individual nowcasts alone.
使用机器学习算法预测新西兰GDP
本文分析了在新西兰数据上估计的机器学习算法的实时临近投射性能。使用大量实时季度宏观经济指标,我们训练了一系列流行的机器学习算法,并对2009年第一季度至2018年第一季度期间每个季度的实际GDP增长进行了即时预测。我们将这些临近预报的预测精度与其他传统的单变量和多变量统计模型进行了比较。我们发现机器学习算法优于传统的统计模型。此外,结合单个机器学习nowcast比单独使用单个nowcast进一步提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信