A New Learning Algorithm for the Maxq Hierarchical Reinforcement Learning Method

F. Mirzazadeh, B. Behsaz, H. Beigy
{"title":"A New Learning Algorithm for the Maxq Hierarchical Reinforcement Learning Method","authors":"F. Mirzazadeh, B. Behsaz, H. Beigy","doi":"10.1109/ICICT.2007.375352","DOIUrl":null,"url":null,"abstract":"The MAXQ hierarchical reinforcement learning method is computationally expensive in applications with deep hierarchy. In this paper, we propose a new learning algorithm for MAXQ method to address the open problem of reducing its computational complexity. While the computational cost of the algorithm is considerably decreased, the required storage of new algorithm is less than two times as the original learning algorithm requires storage. Our experimental results in the simple taxi domain problem show satisfactory behavior of the new algorithm.","PeriodicalId":206443,"journal":{"name":"2007 International Conference on Information and Communication Technology","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2007.375352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The MAXQ hierarchical reinforcement learning method is computationally expensive in applications with deep hierarchy. In this paper, we propose a new learning algorithm for MAXQ method to address the open problem of reducing its computational complexity. While the computational cost of the algorithm is considerably decreased, the required storage of new algorithm is less than two times as the original learning algorithm requires storage. Our experimental results in the simple taxi domain problem show satisfactory behavior of the new algorithm.
一种新的Maxq分层强化学习算法
在具有深度层次结构的应用中,MAXQ分层强化学习方法的计算开销很大。在本文中,我们提出了一种新的MAXQ方法的学习算法,以解决降低其计算复杂度的开放性问题。虽然算法的计算成本大大降低,但新算法所需的存储空间不到原学习算法所需存储空间的两倍。在简单滑行域问题上的实验结果表明了新算法令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信