Vladimir Dimic, Miquel Moretó, Marc Casas, Jan Ciesko, M. Valero
{"title":"RICH: implementing reductions in the cache hierarchy","authors":"Vladimir Dimic, Miquel Moretó, Marc Casas, Jan Ciesko, M. Valero","doi":"10.1145/3392717.3392736","DOIUrl":null,"url":null,"abstract":"Reductions constitute a frequent algorithmic pattern in high-performance and scientific computing. Sophisticated techniques are needed to ensure their correct and scalable concurrent execution on modern processors. Reductions on large arrays represent the most demanding case where traditional approaches are not always applicable due to low performance scalability. To address these challenges, we propose RICH, a runtime-assisted solution that relies on architectural and parallel programming model extensions. RICH updates the reduction variable directly in the cache hierarchy with the help of added in-cache functional units. Our programming model extensions fit with the most relevant parallel programming solutions for shared memory environments like OpenMP. RICH does not modify the ISA, which allows the use of algorithms with reductions from pre-compiled external libraries. Experiments show that our solution achieves the performance improvements of 11.2% on average, compared to the state-of-the-art hardware-based approaches, while it introduces 2.4% area and 3.8% power overhead.","PeriodicalId":346687,"journal":{"name":"Proceedings of the 34th ACM International Conference on Supercomputing","volume":"297 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3392717.3392736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Reductions constitute a frequent algorithmic pattern in high-performance and scientific computing. Sophisticated techniques are needed to ensure their correct and scalable concurrent execution on modern processors. Reductions on large arrays represent the most demanding case where traditional approaches are not always applicable due to low performance scalability. To address these challenges, we propose RICH, a runtime-assisted solution that relies on architectural and parallel programming model extensions. RICH updates the reduction variable directly in the cache hierarchy with the help of added in-cache functional units. Our programming model extensions fit with the most relevant parallel programming solutions for shared memory environments like OpenMP. RICH does not modify the ISA, which allows the use of algorithms with reductions from pre-compiled external libraries. Experiments show that our solution achieves the performance improvements of 11.2% on average, compared to the state-of-the-art hardware-based approaches, while it introduces 2.4% area and 3.8% power overhead.