Torque Controlled Locomotion of a Biped Robot with Link Flexibility

N. Villa, Pierre Fernbach, M. Naveau, Guilhem Saurel, Ewen Dantec, N. Mansard, O. Stasse
{"title":"Torque Controlled Locomotion of a Biped Robot with Link Flexibility","authors":"N. Villa, Pierre Fernbach, M. Naveau, Guilhem Saurel, Ewen Dantec, N. Mansard, O. Stasse","doi":"10.1109/Humanoids53995.2022.10000135","DOIUrl":null,"url":null,"abstract":"When a big and heavy robot moves, it exerts large forces on the environment and on its own structure, its angular momentum can vary substantially, and even the robot's structure can deform if there is a mechanical weakness. Under these conditions, standard locomotion controllers can fail easily. In this article, we propose a complete control scheme to work with heavy robots in torque control. The full centroidal dynamics is used to generate walking gaits online, link deflections are taken into account to estimate the robot posture and all postural instructions are designed to avoid conflicting with each other, improving balance. These choices reduce model and control errors, allowing our centroidal stabilizer to compensate for the remaining residual errors. The stabilizer and motion generator are designed together to ensure feasibility under the assumption of bounded errors. We deploy this scheme to control the locomotion of the humanoid robot Talos, whose hip links flex when walking. It allows us to reach steps of 35 cm, for an average speed of 25 cm/sec, which is among the best performances so far for torque-controlled electric robots.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

When a big and heavy robot moves, it exerts large forces on the environment and on its own structure, its angular momentum can vary substantially, and even the robot's structure can deform if there is a mechanical weakness. Under these conditions, standard locomotion controllers can fail easily. In this article, we propose a complete control scheme to work with heavy robots in torque control. The full centroidal dynamics is used to generate walking gaits online, link deflections are taken into account to estimate the robot posture and all postural instructions are designed to avoid conflicting with each other, improving balance. These choices reduce model and control errors, allowing our centroidal stabilizer to compensate for the remaining residual errors. The stabilizer and motion generator are designed together to ensure feasibility under the assumption of bounded errors. We deploy this scheme to control the locomotion of the humanoid robot Talos, whose hip links flex when walking. It allows us to reach steps of 35 cm, for an average speed of 25 cm/sec, which is among the best performances so far for torque-controlled electric robots.
具有柔性连杆的双足机器人的力矩控制运动
当一个又大又重的机器人移动时,它会对环境和自身结构施加很大的力,它的角动量会发生很大的变化,如果存在机械弱点,甚至机器人的结构也会变形。在这些条件下,标准的运动控制器很容易失效。在本文中,我们提出了一个完整的控制方案,用于重型机器人的转矩控制。利用全质心动力学在线生成行走步态,考虑了连杆的偏转来估计机器人的姿态,并设计了避免相互冲突的姿态指令,提高了平衡能力。这些选择减少了模型和控制误差,允许我们的质心稳定器补偿剩余的残余误差。同时设计了稳定器和运动发生器,以保证在误差有界假设下的可行性。我们利用该方案来控制人形机器人Talos的运动,Talos的臀部关节在行走时弯曲。它允许我们达到35厘米的步长,平均速度为25厘米/秒,这是迄今为止扭矩控制电动机器人的最佳性能之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信