{"title":"A variable stiffness mechanism for improving energy efficiency of a planar single-legged hopping robot","authors":"H. Q. Vu, H. Hauser, D. Leach, R. Pfeifer","doi":"10.1109/ICAR.2013.6766488","DOIUrl":null,"url":null,"abstract":"Recently, variable stiffness actuators (VSAs) have been considered as actuation approaches to improve energy efficiency of legged locomotion robots. In this paper, we present the design and implementation of a variable stiffness actuator, named L-MESTRAN, which allows for improving energy efficiency of a planar single-legged robot over different stride frequencies. The leg in our setup consists of an actuated hip joint and a passive knee joint equipped with the L-MESTRAN. This mechanism is capable of varying stiffness in a large range, maintaining stiffness with almost no energy, and offers a linear joint stiffness. We empirically demonstrate that the L-MESTRAN actuator can increase energy efficiency for hopping locomotion for various stride frequencies. Furthermore, we also demonstrate the capability of the L-MESTRAN to adjust stiffness to improve energy efficiency during locomotion.","PeriodicalId":437814,"journal":{"name":"2013 16th International Conference on Advanced Robotics (ICAR)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 16th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2013.6766488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
Recently, variable stiffness actuators (VSAs) have been considered as actuation approaches to improve energy efficiency of legged locomotion robots. In this paper, we present the design and implementation of a variable stiffness actuator, named L-MESTRAN, which allows for improving energy efficiency of a planar single-legged robot over different stride frequencies. The leg in our setup consists of an actuated hip joint and a passive knee joint equipped with the L-MESTRAN. This mechanism is capable of varying stiffness in a large range, maintaining stiffness with almost no energy, and offers a linear joint stiffness. We empirically demonstrate that the L-MESTRAN actuator can increase energy efficiency for hopping locomotion for various stride frequencies. Furthermore, we also demonstrate the capability of the L-MESTRAN to adjust stiffness to improve energy efficiency during locomotion.