An application of community discovery in academical social networks

Enis Arslan, S. Akyokuş, M. Ganiz
{"title":"An application of community discovery in academical social networks","authors":"Enis Arslan, S. Akyokuş, M. Ganiz","doi":"10.1109/INISTA.2013.6577650","DOIUrl":null,"url":null,"abstract":"The objective of this study is to discover social communities in a social network using different social network community discovery methods that utilize metrics and structures like degree, clustering coefficient, k-cores, weak and strong components. We have used two different datasets and methods: K-core community discovery method for DBLP dataset and Main Path Analysis method for Arxiv High-energy physics theory citation network. At the end of the analyses, we have obtained several reports that represent the skeleton structure of the communities in the networks.","PeriodicalId":301458,"journal":{"name":"2013 IEEE INISTA","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE INISTA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2013.6577650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The objective of this study is to discover social communities in a social network using different social network community discovery methods that utilize metrics and structures like degree, clustering coefficient, k-cores, weak and strong components. We have used two different datasets and methods: K-core community discovery method for DBLP dataset and Main Path Analysis method for Arxiv High-energy physics theory citation network. At the end of the analyses, we have obtained several reports that represent the skeleton structure of the communities in the networks.
社区发现在学术社交网络中的应用
本研究的目的是利用不同的社会网络社区发现方法,利用度、聚类系数、k核、弱和强成分等指标和结构,发现社会网络中的社会社区。我们使用了两种不同的数据集和方法:DBLP数据集的K-core社区发现方法和Arxiv高能物理理论引文网络的主路径分析方法。在分析的最后,我们得到了一些报告,这些报告代表了网络中社区的骨架结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信