Bit-depth expansion using Minimum Risk Based Classification

G. Mittal, V. Jakhetiya, S. Jaiswal, O. Au, A. Tiwari, Dai Wei
{"title":"Bit-depth expansion using Minimum Risk Based Classification","authors":"G. Mittal, V. Jakhetiya, S. Jaiswal, O. Au, A. Tiwari, Dai Wei","doi":"10.1109/VCIP.2012.6410837","DOIUrl":null,"url":null,"abstract":"Bit-depth expansion is an art of converting low bit-depth image into high bit-depth image. Bit-depth of an image represents the number of bits required to represent an intensity value of the image. Bit-depth expansion is an important field since it directly affects the display quality. In this paper, we propose a novel method for bit-depth expansion which uses Minimum Risk Based Classification to create high bit-depth image. Blurring and other annoying artifacts are lowered in this method. Our method gives better objective (PSNR) and superior visual quality as compared to recently developed bit-depth expansion algorithms.","PeriodicalId":103073,"journal":{"name":"2012 Visual Communications and Image Processing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Visual Communications and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2012.6410837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Bit-depth expansion is an art of converting low bit-depth image into high bit-depth image. Bit-depth of an image represents the number of bits required to represent an intensity value of the image. Bit-depth expansion is an important field since it directly affects the display quality. In this paper, we propose a novel method for bit-depth expansion which uses Minimum Risk Based Classification to create high bit-depth image. Blurring and other annoying artifacts are lowered in this method. Our method gives better objective (PSNR) and superior visual quality as compared to recently developed bit-depth expansion algorithms.
基于最小风险分类的位深度扩展
位深度扩展是一种将低位深度图像转换为高位深度图像的技术。图像的位深表示表示图像的强度值所需的位数。位深扩展是一个重要的领域,因为它直接影响到显示质量。本文提出了一种基于最小风险分类的高位深图像扩展方法。这种方法降低了模糊和其他烦人的伪影。与最近开发的位深度扩展算法相比,我们的方法具有更好的物象(PSNR)和更好的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信