UR NLP @ HaSpeeDe 2 at EVALITA 2020: Towards Robust Hate Speech Detection with Contextual Embeddings

J. Hoffmann, Udo Kruschwitz
{"title":"UR NLP @ HaSpeeDe 2 at EVALITA 2020: Towards Robust Hate Speech Detection with Contextual Embeddings","authors":"J. Hoffmann, Udo Kruschwitz","doi":"10.4000/BOOKS.AACCADEMIA.6967","DOIUrl":null,"url":null,"abstract":"We describe our approach to addressTask A of the EVALITA 2020 Hate SpeechDetection (HaSpeeDe2) challenge.Wesubmitted two runs that are both based oncontextual embeddings – which we hadchosen due to their effectiveness in solvinga wide range of NLP problems. For ourbaseline run we use stacked embeddingsthat serve as features in a linear SVM. Oursecond run is a simple ensemble approachof three SVMs with majority voting. Bothapproaches outperform the official base-lines by a large margin, and the ensembleclassifier in particular demonstrates robustperformance on different types of test datacoming 6th (out of 27 runs) for news head-lines and 10th (out of 27) for Twitter feeds.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"602 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We describe our approach to addressTask A of the EVALITA 2020 Hate SpeechDetection (HaSpeeDe2) challenge.Wesubmitted two runs that are both based oncontextual embeddings – which we hadchosen due to their effectiveness in solvinga wide range of NLP problems. For ourbaseline run we use stacked embeddingsthat serve as features in a linear SVM. Oursecond run is a simple ensemble approachof three SVMs with majority voting. Bothapproaches outperform the official base-lines by a large margin, and the ensembleclassifier in particular demonstrates robustperformance on different types of test datacoming 6th (out of 27 runs) for news head-lines and 10th (out of 27) for Twitter feeds.
基于上下文嵌入的鲁棒仇恨语音检测
我们描述了我们解决EVALITA 2020仇恨语音检测(HaSpeeDe2)挑战的任务A的方法。我们提交了两个基于上下文嵌入的运行-我们选择上下文嵌入是因为它们在解决广泛的NLP问题方面的有效性。对于我们的基线运行,我们使用堆叠嵌入作为线性支持向量机的特征。我们的第二次运行是三个支持向量机的简单集成方法,具有多数投票。这两种方法的性能都大大超过了官方基线,特别是集成分类器在不同类型的测试数据上表现出了强大的性能:在新闻标题行中获得第6名(27次运行),在Twitter feed中获得第10名(27次运行)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信