Bounded polynomial randomized consensus

H. Attiya, D. Dolev, N. Shavit
{"title":"Bounded polynomial randomized consensus","authors":"H. Attiya, D. Dolev, N. Shavit","doi":"10.1145/72981.73001","DOIUrl":null,"url":null,"abstract":"Abstract : In (A88), Abrahamson presented a solution to the randomized consensus problem of Chor, Israeli and Li (CIL87), without assuming the existence of anatomic coin flip operation. This elegant algorithm uses unbounded memory, and has expected exponential running time. In (AH89), Aspens and Herlihy provide a breakthrough polynomial-time algorithm. However, it too is based on the use of unbounded memory. In this paper, we present a solution to the randomized consensus problem, that is bounded in space and runs in polynomial expected time.","PeriodicalId":167067,"journal":{"name":"Proceedings of the eighth annual ACM Symposium on Principles of distributed computing","volume":"561 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the eighth annual ACM Symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/72981.73001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

Abstract : In (A88), Abrahamson presented a solution to the randomized consensus problem of Chor, Israeli and Li (CIL87), without assuming the existence of anatomic coin flip operation. This elegant algorithm uses unbounded memory, and has expected exponential running time. In (AH89), Aspens and Herlihy provide a breakthrough polynomial-time algorithm. However, it too is based on the use of unbounded memory. In this paper, we present a solution to the randomized consensus problem, that is bounded in space and runs in polynomial expected time.
有界多项式随机一致
摘要:在(A88)中,Abrahamson提出了Chor, israel和Li (CIL87)的随机共识问题的解决方案,而不假设存在解剖上的抛硬币操作。这种优雅的算法使用无界内存,并具有预期的指数级运行时间。在(AH89)中,Aspens和Herlihy提供了一个突破性的多项式时间算法。然而,它也是基于无限内存的使用。本文给出了随机共识问题的一个解,该解在空间上有界,在多项式期望时间内运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信