A New Supervised Clustering Algorithm for Data Set with Mixed Attributes

Shijin Li, Yuelong Zhu, Jing Liu, Xiaohu Zhang
{"title":"A New Supervised Clustering Algorithm for Data Set with Mixed Attributes","authors":"Shijin Li, Yuelong Zhu, Jing Liu, Xiaohu Zhang","doi":"10.1109/SNPD.2007.360","DOIUrl":null,"url":null,"abstract":"Because of the complexity of data set with mixed attributes, the traditional clustering algorithms appropriate for this kind of dataset are few and the effect of clustering is not good. K-prototype clustering is one of the most commonly used methods in data mining for this kind of data. We borrow the ideas from the multiple classifiers combing technology, use k- prototype as the basis clustering algorithm to design a multi-level clustering ensemble algorithm in this paper, which adoptively selects attributes for re-clustering. Comparison experiments on Adult data set from UCI machine learning data repository show very competitive results and the proposed method is suitable for data editing.","PeriodicalId":197058,"journal":{"name":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2007.360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Because of the complexity of data set with mixed attributes, the traditional clustering algorithms appropriate for this kind of dataset are few and the effect of clustering is not good. K-prototype clustering is one of the most commonly used methods in data mining for this kind of data. We borrow the ideas from the multiple classifiers combing technology, use k- prototype as the basis clustering algorithm to design a multi-level clustering ensemble algorithm in this paper, which adoptively selects attributes for re-clustering. Comparison experiments on Adult data set from UCI machine learning data repository show very competitive results and the proposed method is suitable for data editing.
混合属性数据集的一种新的监督聚类算法
由于混合属性数据集的复杂性,适合这类数据集的传统聚类算法很少,聚类效果不佳。k -原型聚类是这类数据挖掘中最常用的方法之一。本文借鉴多分类器梳理技术的思想,以k- prototype为基础聚类算法,设计了一种多级聚类集成算法,采用自适应选择属性进行重新聚类。在UCI机器学习数据库的成人数据集上进行了对比实验,结果表明该方法具有很强的竞争力,适合于数据编辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信