Lightweight Refresh Method for PCM-based Neuromorphic Circuits

Megumi Ito, M. Ishii, A. Okazaki, Sangbum Kim, J. Okazawa, A. Nomura, K. Hosokawa, W. Haensch
{"title":"Lightweight Refresh Method for PCM-based Neuromorphic Circuits","authors":"Megumi Ito, M. Ishii, A. Okazaki, Sangbum Kim, J. Okazawa, A. Nomura, K. Hosokawa, W. Haensch","doi":"10.1109/NANO.2018.8626327","DOIUrl":null,"url":null,"abstract":"Phase change memory (PCM) is being explored as a synaptic nanodevice for scalable and low-power neuromorphic circuits. We present a novel and lightweight method to refresh PCM cells after they saturate at their maximum conductance during the learning process. Our learning system is an event-based Restricted Boltzmann Machine with Spike Time Dependent Plasticity update rule using a modified contrastive divergence algorithm. By using our event-based neuromorphic circuit simulator and the MNIST handwritten digit dataset, we show that our refresh method reduces power consumption by decreasing the number of SET and RESET programming pulses while maintaining high learning accuracy.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Phase change memory (PCM) is being explored as a synaptic nanodevice for scalable and low-power neuromorphic circuits. We present a novel and lightweight method to refresh PCM cells after they saturate at their maximum conductance during the learning process. Our learning system is an event-based Restricted Boltzmann Machine with Spike Time Dependent Plasticity update rule using a modified contrastive divergence algorithm. By using our event-based neuromorphic circuit simulator and the MNIST handwritten digit dataset, we show that our refresh method reduces power consumption by decreasing the number of SET and RESET programming pulses while maintaining high learning accuracy.
基于pcm的神经形态电路轻量刷新方法
相变存储器(PCM)作为一种可扩展的低功耗神经形态电路的突触纳米器件正在被探索。在学习过程中,我们提出了一种新颖且轻量级的方法来刷新PCM细胞在其最大电导饱和后的状态。我们的学习系统是一个基于事件的受限玻尔兹曼机,它采用了一种改进的对比发散算法,具有峰值时间相关的可塑性更新规则。通过使用我们的基于事件的神经形态电路模拟器和MNIST手写数字数据集,我们表明我们的刷新方法通过减少SET和RESET编程脉冲的数量来降低功耗,同时保持较高的学习精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信