ISODATA classification with parameters estimated by evolutionary approach

M. Merzougui, M. Nasri, B. Bouali
{"title":"ISODATA classification with parameters estimated by evolutionary approach","authors":"M. Merzougui, M. Nasri, B. Bouali","doi":"10.1109/SITA.2013.6560809","DOIUrl":null,"url":null,"abstract":"The lsodata algorithm is an unsupervised data classification algorithm. Its result depends strongly on two parameters: distance threshold for the union of clusters and threshold of typical deviation for the division of a cluster. A bad choice of these two parameters leads the algorithm to spiral out of control leaving the end only one class. To determine these parameters and improvements to this algorithm, evolution strategies are used. An evolutionary algorithm is adapted to estimate the two optimal thresholds to be used by the algorithm then lsodata. This approach is validated on simulation examples. The experimental results confirm the favorable convergence speed and good performance of the proposed algorithm.","PeriodicalId":145244,"journal":{"name":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"992 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2013.6560809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The lsodata algorithm is an unsupervised data classification algorithm. Its result depends strongly on two parameters: distance threshold for the union of clusters and threshold of typical deviation for the division of a cluster. A bad choice of these two parameters leads the algorithm to spiral out of control leaving the end only one class. To determine these parameters and improvements to this algorithm, evolution strategies are used. An evolutionary algorithm is adapted to estimate the two optimal thresholds to be used by the algorithm then lsodata. This approach is validated on simulation examples. The experimental results confirm the favorable convergence speed and good performance of the proposed algorithm.
采用进化方法估计参数的ISODATA分类
lsodata算法是一种无监督数据分类算法。它的结果很大程度上取决于两个参数:聚类联合的距离阈值和聚类划分的典型偏差阈值。这两个参数的错误选择将导致算法失去控制,最终只留下一个类。为了确定这些参数并对算法进行改进,采用了进化策略。采用一种进化算法来估计算法使用的两个最优阈值,然后对数据进行分析。仿真算例验证了该方法的有效性。实验结果表明,该算法具有较快的收敛速度和良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信