Single Loop Inference of Hidden Markov Tree for Multiscale Image Segmentation

Zhang Yinhui, Peng Jinhui, He Zi-fen
{"title":"Single Loop Inference of Hidden Markov Tree for Multiscale Image Segmentation","authors":"Zhang Yinhui, Peng Jinhui, He Zi-fen","doi":"10.1109/ICMTMA.2013.249","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of bottom-up and up-bottom multiscale segmentation of objects in the presence of dynamic backgrounds. Previous hidden Markov tree (HMT) based approaches have exploited an iterative inference scheme and each iteration consists of an two-stage segmentation mechanism, namely, parameter learning and multiscale fusion of likelihoods. In this paper, we propose a novel approach for recovering multiscale segmentation accurately in the absence of iterative multiscale fusion stage. This allows both inference and fusion of multiscale classification likelihoods to be computed in a single loop through bottom-up likelihood estimation and up-bottom posterior inference of HMT. Experimental results on a synthesized image in the presence of Gaussian white noise demonstrate the high robustness achieved by the proposed method.","PeriodicalId":169447,"journal":{"name":"2013 Fifth International Conference on Measuring Technology and Mechatronics Automation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Measuring Technology and Mechatronics Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTMA.2013.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of bottom-up and up-bottom multiscale segmentation of objects in the presence of dynamic backgrounds. Previous hidden Markov tree (HMT) based approaches have exploited an iterative inference scheme and each iteration consists of an two-stage segmentation mechanism, namely, parameter learning and multiscale fusion of likelihoods. In this paper, we propose a novel approach for recovering multiscale segmentation accurately in the absence of iterative multiscale fusion stage. This allows both inference and fusion of multiscale classification likelihoods to be computed in a single loop through bottom-up likelihood estimation and up-bottom posterior inference of HMT. Experimental results on a synthesized image in the presence of Gaussian white noise demonstrate the high robustness achieved by the proposed method.
多尺度图像分割的隐马尔可夫树单回路推理
本文研究了动态背景下物体的自底向上多尺度分割问题。以往基于隐马尔可夫树(HMT)的方法采用迭代推理方案,每次迭代由参数学习和多尺度似然融合两阶段分割机制组成。本文提出了一种在没有迭代多尺度融合阶段的情况下精确恢复多尺度分割的新方法。这使得通过HMT的自底向上的似然估计和自底向上的后验推理,可以在单个循环中计算多尺度分类似然的推断和融合。在存在高斯白噪声的合成图像上的实验结果表明,该方法具有较高的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信