Sensorless intelligent classifier of tool condition in a CNC milling machine using a SOM supervised neural network

G. Mota-Valtierra, L. Franco-Gasca, G. H. Ruiz
{"title":"Sensorless intelligent classifier of tool condition in a CNC milling machine using a SOM supervised neural network","authors":"G. Mota-Valtierra, L. Franco-Gasca, G. H. Ruiz","doi":"10.1504/IJAISC.2011.042710","DOIUrl":null,"url":null,"abstract":"Industry has monitoring systems to determine the tool condition and to ensure quality. This paper presents an intelligent classification system which determines the status of cutters in a CNC milling machine. The tool states are detected through the analysis of the cutting forces drawn from the spindle motors currents. A wavelet transformation was used in order to compress the data and to optimise the classifier structure. Then a supervised SOM neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2011.042710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industry has monitoring systems to determine the tool condition and to ensure quality. This paper presents an intelligent classification system which determines the status of cutters in a CNC milling machine. The tool states are detected through the analysis of the cutting forces drawn from the spindle motors currents. A wavelet transformation was used in order to compress the data and to optimise the classifier structure. Then a supervised SOM neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.
基于SOM监督神经网络的数控铣床刀具状态无传感器智能分类器
工业有监控系统来确定刀具状况并确保质量。介绍了一种数控铣床刀具状态智能分类系统。通过分析主轴电机电流产生的切削力来检测刀具状态。为了压缩数据并优化分类器结构,采用了小波变换。然后由一个监督SOM神经网络负责对信号进行分类。该系统的可靠性达到95%,能够检测破损和磨损的刀具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信