{"title":"Sensorless intelligent classifier of tool condition in a CNC milling machine using a SOM supervised neural network","authors":"G. Mota-Valtierra, L. Franco-Gasca, G. H. Ruiz","doi":"10.1504/IJAISC.2011.042710","DOIUrl":null,"url":null,"abstract":"Industry has monitoring systems to determine the tool condition and to ensure quality. This paper presents an intelligent classification system which determines the status of cutters in a CNC milling machine. The tool states are detected through the analysis of the cutting forces drawn from the spindle motors currents. A wavelet transformation was used in order to compress the data and to optimise the classifier structure. Then a supervised SOM neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2011.042710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Industry has monitoring systems to determine the tool condition and to ensure quality. This paper presents an intelligent classification system which determines the status of cutters in a CNC milling machine. The tool states are detected through the analysis of the cutting forces drawn from the spindle motors currents. A wavelet transformation was used in order to compress the data and to optimise the classifier structure. Then a supervised SOM neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.