Performance Review of Generative Adversarial Network for a Bi-directional Task

Chao Wu
{"title":"Performance Review of Generative Adversarial Network for a Bi-directional Task","authors":"Chao Wu","doi":"10.1109/CONF-SPML54095.2021.00017","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GAN) contributed many significant works in computer vision tasks in different research areas. But, to author’s knowledge, there is no research discussion about GAN’s performance in a bi-directional task. In this paper, we utilize Pix2pix network as a GAN example to test its performance in a bi-directional task, which is to transfer daylight image to night image and transfer night image back to daylight image. The experimental results review both success cases and fail cases to get several interesting observations regarding the influence of human’s perception in evaluation.","PeriodicalId":415094,"journal":{"name":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONF-SPML54095.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative Adversarial Networks (GAN) contributed many significant works in computer vision tasks in different research areas. But, to author’s knowledge, there is no research discussion about GAN’s performance in a bi-directional task. In this paper, we utilize Pix2pix network as a GAN example to test its performance in a bi-directional task, which is to transfer daylight image to night image and transfer night image back to daylight image. The experimental results review both success cases and fail cases to get several interesting observations regarding the influence of human’s perception in evaluation.
双向任务生成对抗网络的性能评价
生成对抗网络(GAN)在不同研究领域的计算机视觉任务中做出了许多重要的贡献。但是,据笔者所知,目前还没有关于GAN在双向任务中的性能的研究讨论。在本文中,我们以Pix2pix网络为例,测试了其在双向任务中的性能,即将白天图像转换为夜间图像,然后将夜间图像转换为白天图像。实验结果回顾了成功案例和失败案例,对人的感知在评价中的影响进行了一些有趣的观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信