Exploiting map information for driver intention estimation at road intersections

S. Lefèvre, C. Laugier, J. Guzman
{"title":"Exploiting map information for driver intention estimation at road intersections","authors":"S. Lefèvre, C. Laugier, J. Guzman","doi":"10.1109/IVS.2011.5940452","DOIUrl":null,"url":null,"abstract":"Safety applications at road intersections require algorithms that can estimate the manoeuvre intention of all the drivers in the scene. In this paper, the use of contextual information extracted from a digital map of the road network is explored. We propose a Bayesian network which combines probabilistically uncertain observations on the vehicle's behaviour and information about the geometrical and topological characteristics of the road intersection in order to infer a driver's manoeuvre intention. The approach is evaluated on trajectories recorded from real traffic, including complex scenarios where the behaviour of the vehicle is inconsistent. We define an evaluation method that accounts for the impossibility to make reliable predictions in some situations, and show that the system is able to reliably combine vehicle state information and map information to infer a driver's intended manoeuvre.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

Abstract

Safety applications at road intersections require algorithms that can estimate the manoeuvre intention of all the drivers in the scene. In this paper, the use of contextual information extracted from a digital map of the road network is explored. We propose a Bayesian network which combines probabilistically uncertain observations on the vehicle's behaviour and information about the geometrical and topological characteristics of the road intersection in order to infer a driver's manoeuvre intention. The approach is evaluated on trajectories recorded from real traffic, including complex scenarios where the behaviour of the vehicle is inconsistent. We define an evaluation method that accounts for the impossibility to make reliable predictions in some situations, and show that the system is able to reliably combine vehicle state information and map information to infer a driver's intended manoeuvre.
利用地图信息估计道路交叉口的驾驶员意图
十字路口的安全应用需要能够估计场景中所有驾驶员的操纵意图的算法。本文探讨了从道路网络的数字地图中提取的上下文信息的使用。我们提出了一个贝叶斯网络,该网络结合了对车辆行为的概率不确定观察和关于道路交叉口的几何和拓扑特征的信息,以推断驾驶员的操纵意图。该方法是根据真实交通记录的轨迹进行评估的,包括车辆行为不一致的复杂场景。我们定义了一种评估方法,该方法考虑了在某些情况下不可能做出可靠的预测,并表明系统能够可靠地结合车辆状态信息和地图信息来推断驾驶员的预期动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信