Context dependent recurrent neural network language model

Tomas Mikolov, G. Zweig
{"title":"Context dependent recurrent neural network language model","authors":"Tomas Mikolov, G. Zweig","doi":"10.1109/SLT.2012.6424228","DOIUrl":null,"url":null,"abstract":"Recurrent neural network language models (RNNLMs) have recently demonstrated state-of-the-art performance across a variety of tasks. In this paper, we improve their performance by providing a contextual real-valued input vector in association with each word. This vector is used to convey contextual information about the sentence being modeled. By performing Latent Dirichlet Allocation using a block of preceding text, we achieve a topic-conditioned RNNLM. This approach has the key advantage of avoiding the data fragmentation associated with building multiple topic models on different data subsets. We report perplexity results on the Penn Treebank data, where we achieve a new state-of-the-art. We further apply the model to the Wall Street Journal speech recognition task, where we observe improvements in word-error-rate.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"592","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 592

Abstract

Recurrent neural network language models (RNNLMs) have recently demonstrated state-of-the-art performance across a variety of tasks. In this paper, we improve their performance by providing a contextual real-valued input vector in association with each word. This vector is used to convey contextual information about the sentence being modeled. By performing Latent Dirichlet Allocation using a block of preceding text, we achieve a topic-conditioned RNNLM. This approach has the key advantage of avoiding the data fragmentation associated with building multiple topic models on different data subsets. We report perplexity results on the Penn Treebank data, where we achieve a new state-of-the-art. We further apply the model to the Wall Street Journal speech recognition task, where we observe improvements in word-error-rate.
上下文相关的递归神经网络语言模型
递归神经网络语言模型(rnnlm)最近在各种任务中表现出了最先进的性能。在本文中,我们通过提供与每个单词关联的上下文实值输入向量来提高它们的性能。这个向量用于传递被建模句子的上下文信息。通过使用前面的文本块执行潜在狄利克雷分配,我们实现了主题条件的RNNLM。这种方法的主要优点是避免了在不同的数据子集上构建多个主题模型所带来的数据碎片。我们在宾州树库数据上报告困惑结果,在那里我们实现了新的最先进的技术。我们进一步将该模型应用于《华尔街日报》的语音识别任务,在那里我们观察到单词错误率的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信