Learning from experience using a decision-theoretic intelligent agent in multi-agent systems

F. Sahin, J. Bay
{"title":"Learning from experience using a decision-theoretic intelligent agent in multi-agent systems","authors":"F. Sahin, J. Bay","doi":"10.1109/SMCIA.2001.936739","DOIUrl":null,"url":null,"abstract":"This paper proposes a decision-theoretic intelligent agent model to solve a herding problem and studies the learning from experience capabilities of the agent model. The proposed intelligent agent model is designed by combining Bayesian networks (BN) and influence diagrams (ID). The online Bayesian network learning method is proposed to accomplish the learning from experience. Intelligent agent software, IntelliAgent, is written to realize the proposed intelligent agent model and to simulate the agents in a problem domain. The same software is then used to simulate the herding problem with one sheep and one dog. Simulation results show that the proposed intelligent agent is successful in establishing a goal (herding) and learning other agents' behaviors.","PeriodicalId":104202,"journal":{"name":"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)","volume":"343 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2001.936739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper proposes a decision-theoretic intelligent agent model to solve a herding problem and studies the learning from experience capabilities of the agent model. The proposed intelligent agent model is designed by combining Bayesian networks (BN) and influence diagrams (ID). The online Bayesian network learning method is proposed to accomplish the learning from experience. Intelligent agent software, IntelliAgent, is written to realize the proposed intelligent agent model and to simulate the agents in a problem domain. The same software is then used to simulate the herding problem with one sheep and one dog. Simulation results show that the proposed intelligent agent is successful in establishing a goal (herding) and learning other agents' behaviors.
多智能体系统中决策理论智能体的经验学习
本文提出了一种解决羊群问题的决策理论智能代理模型,并研究了该模型的经验学习能力。将贝叶斯网络(BN)和影响图(ID)相结合,设计了智能代理模型。提出了在线贝叶斯网络学习方法来实现经验学习。编写了智能代理软件IntelliAgent来实现所提出的智能代理模型,并对问题域中的智能代理进行仿真。然后用同样的软件来模拟一只羊和一只狗的放牧问题。仿真结果表明,所提出的智能体能够成功地建立目标(羊群)并学习其他智能体的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信