Richly Semantical Keyword Searching over Relational Databases

Jianzhao Zhai, Derong Shen, Yue Kou, Tiezheng Nie
{"title":"Richly Semantical Keyword Searching over Relational Databases","authors":"Jianzhao Zhai, Derong Shen, Yue Kou, Tiezheng Nie","doi":"10.1109/WISA.2012.10","DOIUrl":null,"url":null,"abstract":"With the development of keyword search over relational databases, how to improve the result quality is a popular problem. To solve it, existing work mainly are CN-based and graph-based. The CN-based approaches occupy little memory space and have high level of abstract. However, the defect of these approaches is not considering meaningful information in metadata of databases. In this paper, we propose a novel architecture. First, it provides richer semantics for keywords to generate more meaningful candidate networks. Second, it provides query templates to facilitate the query transforms of candidate networks, which contribute to generating more meaningful query results. Third, some properties of ranking are simply summarized. Finally, the experimental results demonstrate that the result quality is improved.","PeriodicalId":313228,"journal":{"name":"2012 Ninth Web Information Systems and Applications Conference","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2012.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the development of keyword search over relational databases, how to improve the result quality is a popular problem. To solve it, existing work mainly are CN-based and graph-based. The CN-based approaches occupy little memory space and have high level of abstract. However, the defect of these approaches is not considering meaningful information in metadata of databases. In this paper, we propose a novel architecture. First, it provides richer semantics for keywords to generate more meaningful candidate networks. Second, it provides query templates to facilitate the query transforms of candidate networks, which contribute to generating more meaningful query results. Third, some properties of ranking are simply summarized. Finally, the experimental results demonstrate that the result quality is improved.
关系型数据库的富语义关键字搜索
随着关系型数据库关键字搜索的发展,如何提高搜索结果的质量是一个备受关注的问题。为了解决这个问题,现有的工作主要是基于神经网络和基于图形的。基于神经网络的方法占用的内存空间小,抽象程度高。然而,这些方法的缺陷在于没有考虑数据库元数据中有意义的信息。在本文中,我们提出了一种新的架构。首先,它为关键词提供了更丰富的语义,以生成更有意义的候选网络。其次,提供查询模板,方便候选网络的查询转换,有助于生成更有意义的查询结果;第三,简单总结了排名的一些属性。最后,实验结果表明,改进后的结果质量得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信