Deep Color-Normal Residual Networks for Geometry Refinement Extracting Color Consistency and Fine Geometry

MinGeun Park, Seungkyu Lee
{"title":"Deep Color-Normal Residual Networks for Geometry Refinement Extracting Color Consistency and Fine Geometry","authors":"MinGeun Park, Seungkyu Lee","doi":"10.1145/3476124.3488646","DOIUrl":null,"url":null,"abstract":"In recent years, texture mapping in 3D modeling has been remarkably improved for realistic rendering. However, small error in reconstructed 3D geometry makes serious error in texture mapping. To address the problem, most of prior methods are devoted to refinement of 3D geometry without visual clues. In this work, we refine 3D geometry based on color consistency and surface normal using a deep neural network. Our method optimizes the location of each vertex maximizing the quality of related textures.","PeriodicalId":199099,"journal":{"name":"SIGGRAPH Asia 2021 Posters","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476124.3488646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, texture mapping in 3D modeling has been remarkably improved for realistic rendering. However, small error in reconstructed 3D geometry makes serious error in texture mapping. To address the problem, most of prior methods are devoted to refinement of 3D geometry without visual clues. In this work, we refine 3D geometry based on color consistency and surface normal using a deep neural network. Our method optimizes the location of each vertex maximizing the quality of related textures.
深度颜色-正态残差网络用于提取颜色一致性和精细几何
近年来,纹理映射在三维建模中的应用得到了显著的改进。然而,三维几何重构的微小误差会导致纹理映射的严重误差。为了解决这一问题,大多数先前的方法都致力于在没有视觉线索的情况下对三维几何图形进行细化。在这项工作中,我们使用深度神经网络基于颜色一致性和表面法线来细化3D几何。我们的方法优化每个顶点的位置,最大限度地提高相关纹理的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信