Managing nonuniformities and uncertainties in vehicle-oriented sensor data over next generation networks

Stavros Nousias, C. Tselios, Dimitris Bitzas, O. Orfila, S. Jamson, P. Mejuto, Dimitrios Amaxilatis, O. Akrivopoulos, I. Chatzigiannakis, A. Lalos, K. Moustakas
{"title":"Managing nonuniformities and uncertainties in vehicle-oriented sensor data over next generation networks","authors":"Stavros Nousias, C. Tselios, Dimitris Bitzas, O. Orfila, S. Jamson, P. Mejuto, Dimitrios Amaxilatis, O. Akrivopoulos, I. Chatzigiannakis, A. Lalos, K. Moustakas","doi":"10.1109/PERCOMW.2018.8480342","DOIUrl":null,"url":null,"abstract":"Detailed and accurate vehicle-oriented sensor data is considered fundamental for efficient vehicle-to-everything V2X communication applications, especially in the upcoming highly heterogeneous, brisk and agile 5G networking era. Information retrieval, transfer and manipulation in real-time offers a small margin for erratic behavior, regardless of its root cause. This paper presents a method for managing nonuniformities and uncertainties found on datasets, based on an elaborate Matrix Completion technique, with superior performance in three distinct cases of vehicle-related sensor data, collected under real driving conditions. Our approach appears capable of handling sensing and communication irregularities, minimizing at the same time the storage and transmission requirements of Multi-access Edge Computing applications.","PeriodicalId":190096,"journal":{"name":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2018.8480342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Detailed and accurate vehicle-oriented sensor data is considered fundamental for efficient vehicle-to-everything V2X communication applications, especially in the upcoming highly heterogeneous, brisk and agile 5G networking era. Information retrieval, transfer and manipulation in real-time offers a small margin for erratic behavior, regardless of its root cause. This paper presents a method for managing nonuniformities and uncertainties found on datasets, based on an elaborate Matrix Completion technique, with superior performance in three distinct cases of vehicle-related sensor data, collected under real driving conditions. Our approach appears capable of handling sensing and communication irregularities, minimizing at the same time the storage and transmission requirements of Multi-access Edge Computing applications.
管理下一代网络中面向车辆的传感器数据的不均匀性和不确定性
详细和准确的车载传感器数据被认为是高效的车对一切V2X通信应用的基础,特别是在即将到来的高度异构、快速和敏捷的5G网络时代。实时的信息检索、传输和操作为不稳定的行为提供了很小的余地,而不管其根本原因是什么。本文提出了一种管理数据集上发现的不均匀性和不确定性的方法,该方法基于一种复杂的矩阵补全技术,在真实驾驶条件下收集的三种不同情况下与车辆相关的传感器数据中具有优越的性能。我们的方法似乎能够处理传感和通信异常,同时最大限度地减少多访问边缘计算应用程序的存储和传输要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信