FFCCD

Yuanchao Xu, Chencheng Ye, Yan Solihin, Xipeng Shen
{"title":"FFCCD","authors":"Yuanchao Xu, Chencheng Ye, Yan Solihin, Xipeng Shen","doi":"10.1145/3470496.3527406","DOIUrl":null,"url":null,"abstract":"Persistent Memory (PM) is increasingly supplementing or substituting DRAM as main memory. Prior work have focused on reusability and memory leaks of persistent memory but have not addressed a problem amplified by persistence, persistent memory fragmentation, which refers to the continuous worsening of fragmentation of persistent memory throughout its usage. This paper reveals the challenges and proposes the first systematic crash-consistent solution, Fence-Free Crash-consistent Concurrent Defragmentation (FFCCD). FFCCD resues persistent pointer format, root nodes and typed allocation provided by persistent memory programming model to enable concurrent defragmentation on PM. FFCCD introduces architecture support for concurrent defragmentation that enables a fence-free design and fast read barrier, reducing two major overheads of defragmenting persistent memory. The techniques is effective (28--73% fragmentation reduction) and fast (4.1% execution time overhead).","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Persistent Memory (PM) is increasingly supplementing or substituting DRAM as main memory. Prior work have focused on reusability and memory leaks of persistent memory but have not addressed a problem amplified by persistence, persistent memory fragmentation, which refers to the continuous worsening of fragmentation of persistent memory throughout its usage. This paper reveals the challenges and proposes the first systematic crash-consistent solution, Fence-Free Crash-consistent Concurrent Defragmentation (FFCCD). FFCCD resues persistent pointer format, root nodes and typed allocation provided by persistent memory programming model to enable concurrent defragmentation on PM. FFCCD introduces architecture support for concurrent defragmentation that enables a fence-free design and fast read barrier, reducing two major overheads of defragmenting persistent memory. The techniques is effective (28--73% fragmentation reduction) and fast (4.1% execution time overhead).
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信