Robust batch algorithm for sequential blind extraction of noisy biomedical signals

A. Cichocki, A. Barros
{"title":"Robust batch algorithm for sequential blind extraction of noisy biomedical signals","authors":"A. Cichocki, A. Barros","doi":"10.1109/ISSPA.1999.818187","DOIUrl":null,"url":null,"abstract":"In many applications, especially in biomedical signal processing (like EEG/MEG time series), source signals are noisy and some have kurtosis close to zero. Most known algorithms for blind signal extraction fail to separate all desired sources if the kurtosis is very low or equals zero. In this paper we propose a new simple second order statistic batch algorithm which is able to efficiently extract various temporally correlated sources even if they have very small or even zero kurtosis, for example colored Gaussian sources. Computer simulation examples illustrate validity and performance of the proposed approach for noisy biomedical signals.","PeriodicalId":302569,"journal":{"name":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1999.818187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In many applications, especially in biomedical signal processing (like EEG/MEG time series), source signals are noisy and some have kurtosis close to zero. Most known algorithms for blind signal extraction fail to separate all desired sources if the kurtosis is very low or equals zero. In this paper we propose a new simple second order statistic batch algorithm which is able to efficiently extract various temporally correlated sources even if they have very small or even zero kurtosis, for example colored Gaussian sources. Computer simulation examples illustrate validity and performance of the proposed approach for noisy biomedical signals.
生物医学噪声信号序列盲提取的鲁棒批处理算法
在许多应用中,特别是在生物医学信号处理(如EEG/MEG时间序列)中,源信号是有噪声的,有些信号的峰度接近于零。如果峰度很低或等于零,大多数已知的盲信号提取算法都不能分离出所有期望的信号源。本文提出了一种新的简单二阶统计量批处理算法,该算法能够有效地提取各种时间相关的源,即使它们具有很小的峰度甚至是零峰度,例如彩色高斯源。计算机仿真实例验证了该方法对生物医学噪声信号的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信