Movie Oriented Positive Negative Emotion Classification from EEG Signal using Wavelet transformation and Machine learning Approaches

Abu Saleh Musa Miah, Jungpil Shin, Md. Al Mehedi Hasan, M. I. Molla, Y. Okuyama, Yoichi Tomioka
{"title":"Movie Oriented Positive Negative Emotion Classification from EEG Signal using Wavelet transformation and Machine learning Approaches","authors":"Abu Saleh Musa Miah, Jungpil Shin, Md. Al Mehedi Hasan, M. I. Molla, Y. Okuyama, Yoichi Tomioka","doi":"10.1109/MCSoC57363.2022.00014","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) sensor plays an important role in developing brain-computer interfaces (BCI) to enhance human-computer interaction (HCI). Nowadays, various types of research works are performed to develop EEG-based HCI systems for controlling and monitoring systems. However, researchers are still facing challenges in developing this system due to noise from the physiological and internal and external artefacts. This study proposed a method to find useful electrodes and extract potential information from the brain nerves for the classification of positive or negative emotions. The collected emotion's EEG signal is recorded using 14 electrodes from the 30-younger people. Two movies were used for positive and negative emotions. In the proposed method, we first extracted the five bands wavelet transform from the EEG and then calculated the standard deviation (SD), average power (AVP) and mean absolute value (MAV) of the five bands wavelet information. Finally, we applied an extra tree classifier (ETC), random forest (RF), and support vector machine (SVM) to classify the emotion based on the feature vector. Among three classifiers ETC achieved higher performance accuracy in F3, FC5, T8, FC6, F8, and AF4 electrodes. This indicates that the F3, FC5, T8, FC6, F8, and AF4 electrodes carry potential information in positive-negative emotion classification.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electroencephalography (EEG) sensor plays an important role in developing brain-computer interfaces (BCI) to enhance human-computer interaction (HCI). Nowadays, various types of research works are performed to develop EEG-based HCI systems for controlling and monitoring systems. However, researchers are still facing challenges in developing this system due to noise from the physiological and internal and external artefacts. This study proposed a method to find useful electrodes and extract potential information from the brain nerves for the classification of positive or negative emotions. The collected emotion's EEG signal is recorded using 14 electrodes from the 30-younger people. Two movies were used for positive and negative emotions. In the proposed method, we first extracted the five bands wavelet transform from the EEG and then calculated the standard deviation (SD), average power (AVP) and mean absolute value (MAV) of the five bands wavelet information. Finally, we applied an extra tree classifier (ETC), random forest (RF), and support vector machine (SVM) to classify the emotion based on the feature vector. Among three classifiers ETC achieved higher performance accuracy in F3, FC5, T8, FC6, F8, and AF4 electrodes. This indicates that the F3, FC5, T8, FC6, F8, and AF4 electrodes carry potential information in positive-negative emotion classification.
基于小波变换和机器学习的脑电信号正向消极情绪分类
脑电传感器在开发脑机接口(BCI)以增强人机交互(HCI)方面发挥着重要作用。目前,各种类型的研究工作正在进行,以开发基于脑电图的HCI系统,用于控制和监测系统。然而,由于生理和内外人工干扰的噪声,研究人员在开发该系统时仍然面临着挑战。本研究提出了一种从脑神经中寻找有用电极和提取电位信息的方法,用于积极情绪和消极情绪的分类。收集到的情绪的脑电图信号用来自30个年轻人的14个电极记录下来。他们分别用两部电影来表达积极情绪和消极情绪。该方法首先从脑电信号中提取5个波段的小波变换,然后计算5个波段小波信息的标准差(SD)、平均功率(AVP)和平均绝对值(MAV)。最后,我们应用额外的树分类器(ETC)、随机森林(RF)和支持向量机(SVM)对基于特征向量的情感进行分类。在三个分类器中,ETC在F3、FC5、T8、FC6、F8和AF4电极上的性能准确率较高。说明F3、FC5、T8、FC6、F8、AF4电极携带正负情绪分类电位信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信