Multifunctional Spatially-Expanded Logic Gate for Unconventional Computations with Memristor-Based Oscillators

Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, V. Ntinas, Stavros Kitsios, P. Bousoulas, Michail-Antisthenis I. Tsompanas, D. Tsoukalas, G. Sirakoulis
{"title":"Multifunctional Spatially-Expanded Logic Gate for Unconventional Computations with Memristor-Based Oscillators","authors":"Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, V. Ntinas, Stavros Kitsios, P. Bousoulas, Michail-Antisthenis I. Tsompanas, D. Tsoukalas, G. Sirakoulis","doi":"10.1109/CNNA49188.2021.9610749","DOIUrl":null,"url":null,"abstract":"There is a great variety of unconventional computing approaches trying to compete with and even surpass the classical computers in providing a solution to high complexity problems. Unconventional computation functionality has been verified and implemented successfully on chemical reactions, paving the way to the development of Chemical Computers. This functionality is investigated here, aiming to transfer chemical reaction's working principle on a circuit capable of processing information, involving the interaction of propagating voltage signals in a geometrically constrained electrical medium. In this work such a circuit has been developed utilizing Memristor-Resistor-Capacitor (MemRC) oscillators and their computing capabilities have been verified by demonstrating multiple Boolean logic calculations in the same medium. More specifically, a variety of Boolean gates is implemented in a versatile topology of oscillating nodes, exploiting the same electrical medium geometry.","PeriodicalId":325231,"journal":{"name":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA49188.2021.9610749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There is a great variety of unconventional computing approaches trying to compete with and even surpass the classical computers in providing a solution to high complexity problems. Unconventional computation functionality has been verified and implemented successfully on chemical reactions, paving the way to the development of Chemical Computers. This functionality is investigated here, aiming to transfer chemical reaction's working principle on a circuit capable of processing information, involving the interaction of propagating voltage signals in a geometrically constrained electrical medium. In this work such a circuit has been developed utilizing Memristor-Resistor-Capacitor (MemRC) oscillators and their computing capabilities have been verified by demonstrating multiple Boolean logic calculations in the same medium. More specifically, a variety of Boolean gates is implemented in a versatile topology of oscillating nodes, exploiting the same electrical medium geometry.
基于忆阻器振荡器的非常规计算的多功能空间扩展逻辑门
有各种各样的非常规计算方法试图与经典计算机竞争,甚至超越经典计算机,为高复杂性问题提供解决方案。非常规计算功能在化学反应上得到了验证和成功实现,为化学计算机的发展铺平了道路。本文研究了这一功能,旨在将化学反应的工作原理转移到能够处理信息的电路上,涉及在几何约束的电介质中传播电压信号的相互作用。在这项工作中,利用忆阻器-电阻-电容(MemRC)振荡器开发了这样的电路,并通过在同一介质中演示多个布尔逻辑计算来验证其计算能力。更具体地说,利用相同的电介质几何结构,在振荡节点的通用拓扑中实现了各种布尔门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信