Grammatical Error Detection Using Error- and Grammaticality-Specific Word Embeddings

Masahiro Kaneko, Yuya Sakaizawa, Mamoru Komachi
{"title":"Grammatical Error Detection Using Error- and Grammaticality-Specific Word Embeddings","authors":"Masahiro Kaneko, Yuya Sakaizawa, Mamoru Komachi","doi":"10.5715/JNLP.25.421","DOIUrl":null,"url":null,"abstract":"In this study, we improve grammatical error detection by learning word embeddings that consider grammaticality and error patterns. Most existing algorithms for learning word embeddings usually model only the syntactic context of words so that classifiers treat erroneous and correct words as similar inputs. We address the problem of contextual information by considering learner errors. Specifically, we propose two models: one model that employs grammatical error patterns and another model that considers grammaticality of the target word. We determine grammaticality of n-gram sequence from the annotated error tags and extract grammatical error patterns for word embeddings from large-scale learner corpora. Experimental results show that a bidirectional long-short term memory model initialized by our word embeddings achieved the state-of-the-art accuracy by a large margin in an English grammatical error detection task on the First Certificate in English dataset.","PeriodicalId":281861,"journal":{"name":"International Joint Conference on Natural Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5715/JNLP.25.421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In this study, we improve grammatical error detection by learning word embeddings that consider grammaticality and error patterns. Most existing algorithms for learning word embeddings usually model only the syntactic context of words so that classifiers treat erroneous and correct words as similar inputs. We address the problem of contextual information by considering learner errors. Specifically, we propose two models: one model that employs grammatical error patterns and another model that considers grammaticality of the target word. We determine grammaticality of n-gram sequence from the annotated error tags and extract grammatical error patterns for word embeddings from large-scale learner corpora. Experimental results show that a bidirectional long-short term memory model initialized by our word embeddings achieved the state-of-the-art accuracy by a large margin in an English grammatical error detection task on the First Certificate in English dataset.
使用错误和语法特定词嵌入的语法错误检测
在本研究中,我们通过学习考虑语法性和错误模式的词嵌入来改进语法错误检测。大多数现有的词嵌入学习算法通常只对词的句法上下文建模,因此分类器将错误和正确的词作为相似的输入。我们通过考虑学习者的错误来解决上下文信息的问题。具体来说,我们提出了两个模型:一个模型采用语法错误模式,另一个模型考虑目标词的语法性。我们从标注的错误标签中确定n-gram序列的语法性,并从大规模学习者语料库中提取词嵌入的语法错误模式。实验结果表明,我们的词嵌入初始化的双向长短期记忆模型在英语数据集First Certificate的英语语法错误检测任务中取得了较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信