Promoting Distributed Trust in Machine Learning and Computational Simulation

N. Bore, R. Raman, Isaac M. Markus, S. Remy, Oliver E. Bent, M. Hind, E. Pissadaki, B. Srivastava, R. Vaculín, Kush R. Varshney, Komminist Weldemariam
{"title":"Promoting Distributed Trust in Machine Learning and Computational Simulation","authors":"N. Bore, R. Raman, Isaac M. Markus, S. Remy, Oliver E. Bent, M. Hind, E. Pissadaki, B. Srivastava, R. Vaculín, Kush R. Varshney, Komminist Weldemariam","doi":"10.1109/BLOC.2019.8751423","DOIUrl":null,"url":null,"abstract":"Policy decisions are increasingly dependent on the outcomes of simulations and/or machine learning models. The ability to share and interact with these outcomes is relevant across multiple fields and is especially critical in the disease modeling community where models are often only accessible and workable to the researchers that generate them. This work presents a blockchain-enabled system that establishes a decentralized trust between parties involved in a modeling process. Utilizing the OpenMalaria framework, we demonstrate the ability to store, share and maintain auditable logs and records of each step in the simulation process, showing how to validate results generated by computational workers. We also show how the system monitors worker outputs to rank and identify faulty workers via comparison to nearest neighbors or historical reward spaces as a means of ensuring model quality.","PeriodicalId":314490,"journal":{"name":"2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BLOC.2019.8751423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Policy decisions are increasingly dependent on the outcomes of simulations and/or machine learning models. The ability to share and interact with these outcomes is relevant across multiple fields and is especially critical in the disease modeling community where models are often only accessible and workable to the researchers that generate them. This work presents a blockchain-enabled system that establishes a decentralized trust between parties involved in a modeling process. Utilizing the OpenMalaria framework, we demonstrate the ability to store, share and maintain auditable logs and records of each step in the simulation process, showing how to validate results generated by computational workers. We also show how the system monitors worker outputs to rank and identify faulty workers via comparison to nearest neighbors or historical reward spaces as a means of ensuring model quality.
促进机器学习和计算仿真中的分布式信任
政策决策越来越依赖于模拟和/或机器学习模型的结果。与这些结果共享和交互的能力与多个领域相关,在疾病建模社区尤其重要,因为模型通常只有生成模型的研究人员才能访问和使用。这项工作提出了一个支持区块链的系统,该系统在建模过程中涉及的各方之间建立了分散的信任。利用OpenMalaria框架,我们演示了存储、共享和维护仿真过程中每个步骤的可审计日志和记录的能力,展示了如何验证计算工作者生成的结果。我们还展示了系统如何监控工人输出,通过与最近邻居或历史奖励空间的比较来排名和识别错误的工人,作为确保模型质量的一种手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信