Exploring Research Trends and Impact: A Bibliometric Analysis of RESTI Journal from 2018 to 2022

Ronal Watrianthos, Yuhefizar Yuhefizar
{"title":"Exploring Research Trends and Impact: A Bibliometric Analysis of RESTI Journal from 2018 to 2022","authors":"Ronal Watrianthos, Yuhefizar Yuhefizar","doi":"10.29207/resti.v7i4.5101","DOIUrl":null,"url":null,"abstract":"This study provides a comprehensive analysis of the RESTI Journal, a prominent publication in the field of systems engineering and information technology. The analysis aims to evaluate the journal's publication output, citation impact, and overall contribution to the field. The study utilizes data from the Dimensions database, focusing on articles published between 2018 and 2022, resulting in a dataset of 594 articles. To analyze the collected data, the study employs bibliometric and network visualization tools such as Bibliometrix and VOSviewer. The analysis reveals a notable increase in the number of publications over time, indicating a growing interest and research activity in the field. Furthermore, the distribution of author productivity deviates from Lotka's law, highlighting variations in author patterns and productivity levels. An examination of institutional affiliations reveals Telkom University as the dominant institution, making a substantial contribution to the journal. Visualizations based on author-provided titles, abstracts, and keywords highlight research trends in image recognition and classification, with a particular emphasis on utilizing Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). Overall, this study provides valuable insights into the performance and trends of the RESTI Journal. The findings contribute to a deeper understanding of the journal's impact and its role in advancing knowledge in systems engineering and information technology. These insights can inform researchers, practitioners, and stakeholders in the field, guiding future research directions and enhancing the scholarly impact of the RESTI Journal.","PeriodicalId":435683,"journal":{"name":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29207/resti.v7i4.5101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides a comprehensive analysis of the RESTI Journal, a prominent publication in the field of systems engineering and information technology. The analysis aims to evaluate the journal's publication output, citation impact, and overall contribution to the field. The study utilizes data from the Dimensions database, focusing on articles published between 2018 and 2022, resulting in a dataset of 594 articles. To analyze the collected data, the study employs bibliometric and network visualization tools such as Bibliometrix and VOSviewer. The analysis reveals a notable increase in the number of publications over time, indicating a growing interest and research activity in the field. Furthermore, the distribution of author productivity deviates from Lotka's law, highlighting variations in author patterns and productivity levels. An examination of institutional affiliations reveals Telkom University as the dominant institution, making a substantial contribution to the journal. Visualizations based on author-provided titles, abstracts, and keywords highlight research trends in image recognition and classification, with a particular emphasis on utilizing Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). Overall, this study provides valuable insights into the performance and trends of the RESTI Journal. The findings contribute to a deeper understanding of the journal's impact and its role in advancing knowledge in systems engineering and information technology. These insights can inform researchers, practitioners, and stakeholders in the field, guiding future research directions and enhancing the scholarly impact of the RESTI Journal.
研究趋势与影响:2018 - 2022年RESTI期刊文献计量分析
本研究提供了一个全面分析的RESTI杂志,一个突出的出版物在系统工程和信息技术领域。该分析旨在评估该期刊的出版产出、引用影响以及对该领域的总体贡献。该研究利用了Dimensions数据库的数据,重点关注2018年至2022年之间发表的文章,得出了一个包含594篇文章的数据集。为了分析收集到的数据,本研究使用了文献计量学和网络可视化工具,如Bibliometrix和VOSviewer。分析显示,随着时间的推移,出版物数量显著增加,表明对该领域的兴趣和研究活动日益增加。此外,作者生产力的分布偏离了Lotka定律,突出了作者模式和生产力水平的差异。对机构隶属关系的检查显示,电信大学是占主导地位的机构,为该杂志做出了重大贡献。基于作者提供的标题、摘要和关键词的可视化显示了图像识别和分类的研究趋势,特别强调了卷积神经网络(CNN)和支持向量机(SVM)的利用。总的来说,这项研究为RESTI期刊的表现和趋势提供了有价值的见解。这些发现有助于更深入地理解该期刊的影响及其在推进系统工程和信息技术知识方面的作用。这些见解可以为该领域的研究人员、从业者和利益相关者提供信息,指导未来的研究方向,增强RESTI期刊的学术影响力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信