Nils Voss, Pablo Quintana, O. Mencer, W. Luk, G. Gaydadjiev
{"title":"Memory Mapping for Multi-die FPGAs","authors":"Nils Voss, Pablo Quintana, O. Mencer, W. Luk, G. Gaydadjiev","doi":"10.1109/FCCM.2019.00021","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm for mapping logical to physical memory resources on FPGAs. Our greedy strategy based algorithm is specifically designed to facilitate timing closure on modern multi-die FPGAs for static-dataflow accelerators utilising most of the on-chip resources. The main objective of the proposed algorithm is to ensure that specific sub-parts of the design under consideration can fully reside within a single die to limit inter-die communication. The above is achieved by performing the memory mapping for each sub-part of the design separately while keeping allocation of the available physical resources balanced. As a result the number of inter-die connections is reduced on average by 50% compared to an algorithm targeting minimal area usage for real, complex applications using most of the on-chip's resources. Additionally, our algorithm is the only one out of the four evaluated approaches which successfully produces place and route results for all 33 applications and benchmarks.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"57 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper proposes an algorithm for mapping logical to physical memory resources on FPGAs. Our greedy strategy based algorithm is specifically designed to facilitate timing closure on modern multi-die FPGAs for static-dataflow accelerators utilising most of the on-chip resources. The main objective of the proposed algorithm is to ensure that specific sub-parts of the design under consideration can fully reside within a single die to limit inter-die communication. The above is achieved by performing the memory mapping for each sub-part of the design separately while keeping allocation of the available physical resources balanced. As a result the number of inter-die connections is reduced on average by 50% compared to an algorithm targeting minimal area usage for real, complex applications using most of the on-chip's resources. Additionally, our algorithm is the only one out of the four evaluated approaches which successfully produces place and route results for all 33 applications and benchmarks.