Can Future Wireless Networks Detect Fires?

David Radke, Omid Abari, Tim Brecht, K. Larson
{"title":"Can Future Wireless Networks Detect Fires?","authors":"David Radke, Omid Abari, Tim Brecht, K. Larson","doi":"10.1145/3408308.3427978","DOIUrl":null,"url":null,"abstract":"Latencies, operating ranges, and false positive rates for existing indoor fire detection systems like smoke detectors and sprinkler systems are far from ideal. This paper explores the use of wireless radio frequency (RF) signals to detect indoor fires with low latency, through walls and other occlusions. We build on past research focused on wireless sensing, and introduce RFire, a system which uses millimeter wave technology and deep learning to extract instances of fire. We perform line-of-sight (LoS) and occluded non-LoS experiments with fire at different distances, and find that RFire achieves a best-result mean latency of 24 seconds when trained and tested in multiple environments. RFire yields at least a 4 times improvement in mean alarm latency over today's alarms.","PeriodicalId":287030,"journal":{"name":"Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3408308.3427978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Latencies, operating ranges, and false positive rates for existing indoor fire detection systems like smoke detectors and sprinkler systems are far from ideal. This paper explores the use of wireless radio frequency (RF) signals to detect indoor fires with low latency, through walls and other occlusions. We build on past research focused on wireless sensing, and introduce RFire, a system which uses millimeter wave technology and deep learning to extract instances of fire. We perform line-of-sight (LoS) and occluded non-LoS experiments with fire at different distances, and find that RFire achieves a best-result mean latency of 24 seconds when trained and tested in multiple environments. RFire yields at least a 4 times improvement in mean alarm latency over today's alarms.
未来的无线网络能探测到火灾吗?
现有的室内火灾探测系统(如烟雾探测器和喷水灭火系统)的延迟、工作范围和误报率远不理想。本文探讨了使用无线射频(RF)信号来检测低延迟的室内火灾,通过墙壁和其他遮挡。我们在过去专注于无线传感的研究基础上,介绍了RFire,一个使用毫米波技术和深度学习来提取火灾实例的系统。我们对不同距离的火力进行了视距(LoS)和遮挡的非视距实验,发现RFire在多个环境中训练和测试时达到了24秒的最佳结果。RFire的平均警报延迟时间比目前的警报至少提高了4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信