On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line

Robert Beinert, Cosmas Heiß, G. Steidl
{"title":"On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line","authors":"Robert Beinert, Cosmas Heiß, G. Steidl","doi":"10.48550/arXiv.2205.09006","DOIUrl":null,"url":null,"abstract":"Let $x_1<\\dots<x_n$ and $y_1<\\dots<y_n$, $n \\in \\mathbb N$, be real numbers. We show by an example that the assignment problem $$ \\max_{\\sigma \\in S_n} F_\\sigma(x,y) := \\frac12 \\sum_{i,k=1}^n |x_i - x_k|^\\alpha \\, |y_{\\sigma(i)} - y_{\\sigma(k)}|^\\alpha, \\quad \\alpha>0, $$ is in general neither solved by the identical permutation (id) nor the anti-identical permutation (a-id) if $n>2 +2^\\alpha$. Indeed the above maximum can be, depending on the number of points, arbitrary far away from $F_\\text{id}(x,y)$ and $F_\\text{a-id}(x,y)$. The motivation to deal with such assignment problems came from their relation to Gromov-Wasserstein divergences which have recently attained a lot of attention.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.09006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Let $x_1<\dots0, $$ is in general neither solved by the identical permutation (id) nor the anti-identical permutation (a-id) if $n>2 +2^\alpha$. Indeed the above maximum can be, depending on the number of points, arbitrary far away from $F_\text{id}(x,y)$ and $F_\text{a-id}(x,y)$. The motivation to deal with such assignment problems came from their relation to Gromov-Wasserstein divergences which have recently attained a lot of attention.
实线上与Gromov-Wasserstein距离有关的分配问题
设$x_10,如果$n>2 +2^\alpha$,则$$一般既不能由同置换(id)解出,也不能由反同置换(a-id)解出。事实上,根据点的数量,上述最大值可以在距离$F_\text{id}(x,y)$和$F_\text{a-id}(x,y)$任意远的地方。处理这类分配问题的动机来自于它们与最近受到广泛关注的格罗莫夫-沃瑟斯坦分歧的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信