SentenceRank — A graph based approach to summarize text

A. Ramesh, K. Srinivasa, N. Pramod
{"title":"SentenceRank — A graph based approach to summarize text","authors":"A. Ramesh, K. Srinivasa, N. Pramod","doi":"10.1109/ICADIWT.2014.6814680","DOIUrl":null,"url":null,"abstract":"We introduce a graph and an intersection based technique which uses statistical and semantic analysis for computing relative importance of textual units in large data sets in order to summarize text. Current implementations consider only the mathematical/statistical approach to summarize text. (like frequency, TFIDF, etc.) But there are many cases where two completely different textual units might be semantically related. We hope to overcome this problem by exploiting the resources of WordNet and by the use of semantic graphs which represents the semantic dissimilarity between any pair of sentences. Ranking is usually performed on statistical information. The algorithm constructs semantic graphs using implicit links which are based on the semantic relatedness between text nodes and consequently ranks nodes using a ranking algorithm.","PeriodicalId":339627,"journal":{"name":"The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADIWT.2014.6814680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We introduce a graph and an intersection based technique which uses statistical and semantic analysis for computing relative importance of textual units in large data sets in order to summarize text. Current implementations consider only the mathematical/statistical approach to summarize text. (like frequency, TFIDF, etc.) But there are many cases where two completely different textual units might be semantically related. We hope to overcome this problem by exploiting the resources of WordNet and by the use of semantic graphs which represents the semantic dissimilarity between any pair of sentences. Ranking is usually performed on statistical information. The algorithm constructs semantic graphs using implicit links which are based on the semantic relatedness between text nodes and consequently ranks nodes using a ranking algorithm.
SentenceRank——基于图形的文本总结方法
我们引入了一种基于图和交集的技术,该技术使用统计和语义分析来计算大型数据集中文本单元的相对重要性,以便总结文本。目前的实现只考虑数学/统计方法来总结文本。(如频率、TFIDF等)但是在很多情况下,两个完全不同的文本单位可能在语义上相关。我们希望通过利用WordNet的资源和使用语义图来表示任何一对句子之间的语义不相似性来克服这个问题。排名通常是根据统计信息进行的。该算法基于文本节点之间的语义相关性,使用隐式链接构建语义图,并使用排序算法对节点进行排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信