An efficient Spline-based RRT path planner for non-holonomic robots in cluttered environments

Kwangjin Yang
{"title":"An efficient Spline-based RRT path planner for non-holonomic robots in cluttered environments","authors":"Kwangjin Yang","doi":"10.1109/ICUAS.2013.6564701","DOIUrl":null,"url":null,"abstract":"Planning in a cluttered environment under differential constraints is a difficult problem because the planner must satisfy the external constraints that arise from obstacles in the environment and the internal constraints due to the kinematic/dynamic limitations of the robot. This paper proposes a novel Spline-based Rapidly-exploring Random Tree (SRRT) algorithm which treats both the external and internal constraints simultaneously and efficiently. The proposed algorithm removes the need to discretize the action space as is common with conventional RRT, thus improving path quality. In addition, computationally expensive numerical integration of the system dynamics is replaced by an efficient spline curve parameterization. Finally, the SRRT guarantees continuity of curvature along the path satisfying any upper-bounded curvature constraints. This paper presents the underlying theory to the SRRT algorithm and presents simulation results of a mobile robot efficiently navigating through cluttered environments.","PeriodicalId":322089,"journal":{"name":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"39 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2013.6564701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Planning in a cluttered environment under differential constraints is a difficult problem because the planner must satisfy the external constraints that arise from obstacles in the environment and the internal constraints due to the kinematic/dynamic limitations of the robot. This paper proposes a novel Spline-based Rapidly-exploring Random Tree (SRRT) algorithm which treats both the external and internal constraints simultaneously and efficiently. The proposed algorithm removes the need to discretize the action space as is common with conventional RRT, thus improving path quality. In addition, computationally expensive numerical integration of the system dynamics is replaced by an efficient spline curve parameterization. Finally, the SRRT guarantees continuity of curvature along the path satisfying any upper-bounded curvature constraints. This paper presents the underlying theory to the SRRT algorithm and presents simulation results of a mobile robot efficiently navigating through cluttered environments.
杂乱环境下非完整机器人基于样条的RRT路径规划方法
微分约束下的杂乱环境规划是一个难题,因为规划者必须满足环境中障碍物产生的外部约束和机器人运动学/动力学限制带来的内部约束。本文提出了一种基于样条的快速探索随机树(SRRT)算法,该算法能同时有效地处理内部约束和外部约束。该算法不需要像传统RRT那样对动作空间进行离散化,从而提高了路径质量。此外,用高效的样条曲线参数化代替了计算量大的系统动力学数值积分。最后,SRRT保证了满足任何上界曲率约束的路径上曲率的连续性。本文介绍了SRRT算法的基本原理,并给出了一个移动机器人在混乱环境中高效导航的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信