Reinforcement Learning based MIMO Controller for Virtual Inertia Control in Isolated Microgrids

V. Skiparev, J. Belikov, E. Petlenkov, Y. Levron
{"title":"Reinforcement Learning based MIMO Controller for Virtual Inertia Control in Isolated Microgrids","authors":"V. Skiparev, J. Belikov, E. Petlenkov, Y. Levron","doi":"10.1109/ISGT-Europe54678.2022.9960447","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-input multi-output controller for optimal control of nonlinear energy storage, using deep reinforcement learning (DRL) algorithm. This controller provides the frequency support in an isolated microgrid with high penetration of variable renewable energy sources and varying system inertia. To achieve an optimal control we redesigned neural network of actor and critic, simplified deep deterministic policy gradient (DDPG) rules, and reorganized the reward/punishment system. Simulation results show the efficiency of the proposed virtual inertia control architecture in several scenarios.","PeriodicalId":311595,"journal":{"name":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Europe54678.2022.9960447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a multi-input multi-output controller for optimal control of nonlinear energy storage, using deep reinforcement learning (DRL) algorithm. This controller provides the frequency support in an isolated microgrid with high penetration of variable renewable energy sources and varying system inertia. To achieve an optimal control we redesigned neural network of actor and critic, simplified deep deterministic policy gradient (DDPG) rules, and reorganized the reward/punishment system. Simulation results show the efficiency of the proposed virtual inertia control architecture in several scenarios.
基于强化学习的MIMO隔离微电网虚拟惯性控制
本文采用深度强化学习(DRL)算法,提出了一种多输入多输出的非线性储能最优控制控制器。该控制器在具有可变可再生能源高渗透和系统惯性变化的孤立微电网中提供频率支持。为了实现最优控制,我们重新设计了演员和评论家的神经网络,简化了深度确定性策略梯度(deep deterministic policy gradient, DDPG)规则,重组了奖惩系统。仿真结果表明了所提出的虚拟惯性控制体系在多种场景下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信