Language Identification in Code-Mixed Data using Multichannel Neural Networks and Context Capture

NUT@EMNLP Pub Date : 2018-08-21 DOI:10.18653/v1/W18-6116
Soumil Mandal, Anil Kumar Singh
{"title":"Language Identification in Code-Mixed Data using Multichannel Neural Networks and Context Capture","authors":"Soumil Mandal, Anil Kumar Singh","doi":"10.18653/v1/W18-6116","DOIUrl":null,"url":null,"abstract":"An accurate language identification tool is an absolute necessity for building complex NLP systems to be used on code-mixed data. Lot of work has been recently done on the same, but there’s still room for improvement. Inspired from the recent advancements in neural network architectures for computer vision tasks, we have implemented multichannel neural networks combining CNN and LSTM for word level language identification of code-mixed data. Combining this with a Bi-LSTM-CRF context capture module, accuracies of 93.28% and 93.32% is achieved on our two testing sets.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-6116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

An accurate language identification tool is an absolute necessity for building complex NLP systems to be used on code-mixed data. Lot of work has been recently done on the same, but there’s still room for improvement. Inspired from the recent advancements in neural network architectures for computer vision tasks, we have implemented multichannel neural networks combining CNN and LSTM for word level language identification of code-mixed data. Combining this with a Bi-LSTM-CRF context capture module, accuracies of 93.28% and 93.32% is achieved on our two testing sets.
基于多通道神经网络和上下文捕获的代码混合数据语言识别
对于构建用于代码混合数据的复杂NLP系统来说,精确的语言识别工具是绝对必要的。最近在这方面做了很多工作,但仍有改进的余地。受计算机视觉任务中神经网络架构的最新进展的启发,我们实现了将CNN和LSTM结合起来的多通道神经网络,用于代码混合数据的词级语言识别。将其与Bi-LSTM-CRF上下文捕获模块相结合,在我们的两个测试集上实现了93.28%和93.32%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信