A Machine Learning Perspective in an Effective Monitoring of Thermal Performance of Transformer

Syed Shadab Nayyer, J. Hozefa, M. Rahul, C. Mandhar
{"title":"A Machine Learning Perspective in an Effective Monitoring of Thermal Performance of Transformer","authors":"Syed Shadab Nayyer, J. Hozefa, M. Rahul, C. Mandhar","doi":"10.1109/CSCITA55725.2023.10104801","DOIUrl":null,"url":null,"abstract":"As an integral part of the Smart Grid (SG), transformers’ thermal profile (Accurate Top-oil Temperature (TOT) and Hot-spot Temperature (HST)) predictions are essential for maximizing transformer utilization and deciding on the best remedial action in the case of transformer failures. However, for these predictions and estimates, the classical mathematical models of TOT lead to a mismatch between the estimated and the actual value because of assumptions, simplifications, and lack of sufficient data points. The online monitoring of transformers’ rate of ageing, capability to overload, and diagnosis are restricted by uncertainties in measurements and classical mathematical models. Therefore, a Machine Learning (ML) perspective is explored by using the Gaussian Process Regression (GPR)based TOT model to incorporate these model uncertainty and measurement noise. The transformer LoL (Loss-of-Life) and HST with uncertainties are evaluated using existing thermal (thermal-electrical-based) and GPR models.To authenticate the effectiveness of the proposed approach, MATLAB-based virtual data and data from an in-service transformer are utilized.","PeriodicalId":224479,"journal":{"name":"2023 International Conference on Communication System, Computing and IT Applications (CSCITA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Communication System, Computing and IT Applications (CSCITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCITA55725.2023.10104801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As an integral part of the Smart Grid (SG), transformers’ thermal profile (Accurate Top-oil Temperature (TOT) and Hot-spot Temperature (HST)) predictions are essential for maximizing transformer utilization and deciding on the best remedial action in the case of transformer failures. However, for these predictions and estimates, the classical mathematical models of TOT lead to a mismatch between the estimated and the actual value because of assumptions, simplifications, and lack of sufficient data points. The online monitoring of transformers’ rate of ageing, capability to overload, and diagnosis are restricted by uncertainties in measurements and classical mathematical models. Therefore, a Machine Learning (ML) perspective is explored by using the Gaussian Process Regression (GPR)based TOT model to incorporate these model uncertainty and measurement noise. The transformer LoL (Loss-of-Life) and HST with uncertainties are evaluated using existing thermal (thermal-electrical-based) and GPR models.To authenticate the effectiveness of the proposed approach, MATLAB-based virtual data and data from an in-service transformer are utilized.
基于机器学习的变压器热性能有效监测
作为智能电网(SG)的组成部分,变压器的热分布(准确的顶油温度(TOT)和热点温度(HST))预测对于最大限度地提高变压器利用率和在变压器故障情况下决定最佳补救措施至关重要。然而,对于这些预测和估计,由于假设、简化和缺乏足够的数据点,经典的TOT数学模型导致估计值与实际值之间的不匹配。变压器老化率、过载能力的在线监测和诊断受到测量和经典数学模型的不确定性的限制。因此,通过使用基于高斯过程回归(GPR)的TOT模型来整合这些模型不确定性和测量噪声,探索了机器学习(ML)的视角。使用现有的热学(基于热电学)和探地雷达模型评估变压器的寿命损失(LoL)和HST。为了验证该方法的有效性,利用了基于matlab的虚拟数据和在役变压器的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信