Ananya - a Named-Entity-Recognition (NER) system for Sinhala language

S. A. P. M. Manamini, A. F. Ahamed, R. Rajapakshe, G. H. A. Reemal, Sanath Jayasena, G. Dias, Surangika Ranathunga
{"title":"Ananya - a Named-Entity-Recognition (NER) system for Sinhala language","authors":"S. A. P. M. Manamini, A. F. Ahamed, R. Rajapakshe, G. H. A. Reemal, Sanath Jayasena, G. Dias, Surangika Ranathunga","doi":"10.1109/MERCON.2016.7480111","DOIUrl":null,"url":null,"abstract":"Named-Entity-Recognition (NER) is one of the major tasks under Natural Language Processing, which is widely used in the fields of Computer Science and Computational Linguistics. However, the amount of prior research done on NER for Sinhala is very minimal. In this paper, we present data-driven techniques to detect Named Entities in Sinhala text, with the use of Conditional Random Fields (CRF) and Maximum Entropy (ME) statistical modeling methods. Results obtained from experiments indicate that CRF, which provided the highest accuracy for the same task for other languages outperforms ME in Sinhala NER as well. Furthermore, we identify different linguistic features such as orthographic word level and contextual information that are effective with both CRF and ME Algorithms.","PeriodicalId":184790,"journal":{"name":"2016 Moratuwa Engineering Research Conference (MERCon)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2016.7480111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Named-Entity-Recognition (NER) is one of the major tasks under Natural Language Processing, which is widely used in the fields of Computer Science and Computational Linguistics. However, the amount of prior research done on NER for Sinhala is very minimal. In this paper, we present data-driven techniques to detect Named Entities in Sinhala text, with the use of Conditional Random Fields (CRF) and Maximum Entropy (ME) statistical modeling methods. Results obtained from experiments indicate that CRF, which provided the highest accuracy for the same task for other languages outperforms ME in Sinhala NER as well. Furthermore, we identify different linguistic features such as orthographic word level and contextual information that are effective with both CRF and ME Algorithms.
Ananya -僧伽罗语命名实体识别(NER)系统
命名实体识别(NER)是自然语言处理的主要任务之一,在计算机科学和计算语言学等领域有着广泛的应用。然而,之前对僧伽罗人的NER进行的研究非常少。在本文中,我们提出了使用条件随机场(CRF)和最大熵(ME)统计建模方法来检测僧伽罗语文本中的命名实体的数据驱动技术。实验结果表明,CRF在其他语言的相同任务中提供了最高的准确率,也优于ME在僧伽罗语NER中的表现。此外,我们还确定了不同的语言特征,如正字法单词水平和上下文信息,这些特征在CRF和ME算法中都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信