Performance evaluation of Independent Component Analysis in an iris recognition system

I. Bouraoui, S. Chitroub, A. Bouridane
{"title":"Performance evaluation of Independent Component Analysis in an iris recognition system","authors":"I. Bouraoui, S. Chitroub, A. Bouridane","doi":"10.1109/AICCSA.2010.5586977","DOIUrl":null,"url":null,"abstract":"The overall performance of any iris recognition system relies on the performance of its components, which are preprocessing, feature extraction and matching. Feature extraction is the important step of such recognition system, but it is strongly dependent on the pre-processing step that is consisting of localising and normalising the iris. In this paper, Independent Component Analysis (ICA), which is a recently developed statistical method for data analysis, is applied for extracting the features for iris region of interest that are statistically independent. Based on some mathematical criteria, the performance of ICA is evaluated by using two different subsets of CASIA-V3 iris image database. The obtained results are convincing and some future improved research works are subsequently envisaged.","PeriodicalId":352946,"journal":{"name":"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2010.5586977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The overall performance of any iris recognition system relies on the performance of its components, which are preprocessing, feature extraction and matching. Feature extraction is the important step of such recognition system, but it is strongly dependent on the pre-processing step that is consisting of localising and normalising the iris. In this paper, Independent Component Analysis (ICA), which is a recently developed statistical method for data analysis, is applied for extracting the features for iris region of interest that are statistically independent. Based on some mathematical criteria, the performance of ICA is evaluated by using two different subsets of CASIA-V3 iris image database. The obtained results are convincing and some future improved research works are subsequently envisaged.
独立分量分析在虹膜识别系统中的性能评价
虹膜识别系统的整体性能取决于其预处理、特征提取和匹配三个组成部分的性能。特征提取是虹膜识别系统的重要步骤,但它强烈依赖于虹膜定位和归一化的预处理步骤。本文将独立分量分析(Independent Component Analysis, ICA)应用于虹膜感兴趣区域的特征提取,ICA是近年来发展起来的一种用于数据分析的统计方法。基于一定的数学准则,利用CASIA-V3虹膜图像数据库的两个不同子集对ICA的性能进行了评价。得到的结果是令人信服的,随后设想了一些未来改进的研究工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信