Adaptive Gaussian Fuzzy Classifier for Real-Time Emotion Recognition in Computer Games

D. Leite, Volnei Frigeri, Rodrigo Medeiros
{"title":"Adaptive Gaussian Fuzzy Classifier for Real-Time Emotion Recognition in Computer Games","authors":"D. Leite, Volnei Frigeri, Rodrigo Medeiros","doi":"10.1109/LA-CCI48322.2021.9769842","DOIUrl":null,"url":null,"abstract":"Emotion recognition has become a need for more realistic and interactive machines and computer systems. The greatest challenge is the availability of high-performance algorithms to effectively manage individual differences and nonstationarities in physiological data, i.e., algorithms that customize models to users with no subject-specific calibration data. We describe an evolving Gaussian Fuzzy Classifier (eGFC), which is supported by a semi-supervised learning algorithm to recognize emotion patterns from electroencephalogram (EEG) data streams. We extract features from the Fourier spectrum of EEG data. The data are provided by 28 individuals playing the games ‘Train Sim World’, ‘Unravel’, ‘Slender The Arrival’, and ‘Goat Simulator’ – a public dataset. Different emotions prevail, namely, boredom, calmness, horror and joy. We analyze individual electrodes, time window lengths, and frequency bands on the accuracy of user-independent eGFCs. We conclude that both brain hemispheres may assist classification, especially electrodes on the frontal (Af3-Af4), occipital (O1-O2), and temporal (T7-T8) areas. We observe that patterns may be eventually found in any frequency band; however, the Alpha (8-13Hz), Delta (1-4Hz), and Theta (4-8Hz) bands, in this order, are more correlated with the emotion classes. eGFC has shown to be effective for real-time learning of EEG data. It reaches a 72.2% accuracy using a variable rule base, 10-second windows, and 1.8ms/sample processing time in a highly-stochastic time-varying 4-class classification problem.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"843 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Emotion recognition has become a need for more realistic and interactive machines and computer systems. The greatest challenge is the availability of high-performance algorithms to effectively manage individual differences and nonstationarities in physiological data, i.e., algorithms that customize models to users with no subject-specific calibration data. We describe an evolving Gaussian Fuzzy Classifier (eGFC), which is supported by a semi-supervised learning algorithm to recognize emotion patterns from electroencephalogram (EEG) data streams. We extract features from the Fourier spectrum of EEG data. The data are provided by 28 individuals playing the games ‘Train Sim World’, ‘Unravel’, ‘Slender The Arrival’, and ‘Goat Simulator’ – a public dataset. Different emotions prevail, namely, boredom, calmness, horror and joy. We analyze individual electrodes, time window lengths, and frequency bands on the accuracy of user-independent eGFCs. We conclude that both brain hemispheres may assist classification, especially electrodes on the frontal (Af3-Af4), occipital (O1-O2), and temporal (T7-T8) areas. We observe that patterns may be eventually found in any frequency band; however, the Alpha (8-13Hz), Delta (1-4Hz), and Theta (4-8Hz) bands, in this order, are more correlated with the emotion classes. eGFC has shown to be effective for real-time learning of EEG data. It reaches a 72.2% accuracy using a variable rule base, 10-second windows, and 1.8ms/sample processing time in a highly-stochastic time-varying 4-class classification problem.
计算机游戏中实时情绪识别的自适应高斯模糊分类器
情感识别已经成为更现实和互动的机器和计算机系统的需要。最大的挑战是高性能算法的可用性,以有效地管理生理数据中的个体差异和非平稳性,即,为没有特定主题校准数据的用户定制模型的算法。我们描述了一种进化的高斯模糊分类器(eGFC),该分类器在半监督学习算法的支持下从脑电图(EEG)数据流中识别情绪模式。从脑电数据的傅立叶谱中提取特征。这些数据是由28个玩“模拟火车世界”、“解开”、“Slender The Arrival”和“山羊模拟器”游戏的人提供的,这是一个公共数据集。不同的情绪盛行,即无聊、平静、恐惧和喜悦。我们分析了与用户无关的egfc精度的单个电极、时间窗长度和频带。我们得出结论,两个大脑半球都可以帮助分类,特别是额叶(Af3-Af4)、枕叶(O1-O2)和颞叶(T7-T8)区域的电极。我们观察到,模式可能最终发现在任何频段;然而,Alpha (8-13Hz), Delta (1-4Hz)和Theta (4-8Hz)波段,按照这个顺序,与情绪类别的关联更大。eGFC对脑电信号的实时学习是有效的。在一个高度随机时变的4类分类问题中,使用可变规则库、10秒窗口和1.8ms/样本处理时间,它达到了72.2%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信