Towards Language-independent Sentiment Analysis

Tarek Abudawood, Heelah A. Alraqibah, Waleed Alsanie
{"title":"Towards Language-independent Sentiment Analysis","authors":"Tarek Abudawood, Heelah A. Alraqibah, Waleed Alsanie","doi":"10.1109/NCG.2018.8593042","DOIUrl":null,"url":null,"abstract":"In this work, we systematically develop a Language-independent Sentiment Analysis (LISA) approach. We argue that it is generic enough to be applied across different languages/domains. Our argument is supported by an empirical evaluation showing that the proposed approach produces a competitive predictive performance if compared to others sentiment analysis approaches where there is a heavy reliance on language resources and absence of systematic pre-processing methodologies. Furthermore, when LISA is encapsulated into a multi-lingual and multi-domain version, (MLISA), we can have an accurate and compact model that can be applied to multiple languages/domains simultaneously and, hence, it suitable for online sentiment classification.","PeriodicalId":305464,"journal":{"name":"2018 21st Saudi Computer Society National Computer Conference (NCC)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st Saudi Computer Society National Computer Conference (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCG.2018.8593042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we systematically develop a Language-independent Sentiment Analysis (LISA) approach. We argue that it is generic enough to be applied across different languages/domains. Our argument is supported by an empirical evaluation showing that the proposed approach produces a competitive predictive performance if compared to others sentiment analysis approaches where there is a heavy reliance on language resources and absence of systematic pre-processing methodologies. Furthermore, when LISA is encapsulated into a multi-lingual and multi-domain version, (MLISA), we can have an accurate and compact model that can be applied to multiple languages/domains simultaneously and, hence, it suitable for online sentiment classification.
面向语言独立情感分析
在这项工作中,我们系统地开发了一种与语言无关的情感分析(LISA)方法。我们认为它足够通用,可以应用于不同的语言/领域。我们的论点得到了一项实证评估的支持,该评估表明,与其他严重依赖语言资源和缺乏系统预处理方法的情感分析方法相比,所提出的方法产生了具有竞争力的预测性能。此外,当LISA被封装成一个多语言和多领域版本(misa)时,我们可以有一个精确和紧凑的模型,可以同时应用于多个语言/领域,因此,它适合在线情感分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信